User Manual
Nexto Series CPU
NX3030

MU214615 Rev. F

September 25, 2024
® o,
® . .C”. o .,, I ¥
. ° ° e ‘ - » p, '. RS " L s AR
o : . - ' Y 3 .-.\' ? X
o .o‘.'.‘ " el % ".”"... 4 .
R Sk .\.o . .
° ° ’ .. ‘ .
o -
» .
. -
. L 2]

www.altus.com.br

General Supply Conditions

No part of this document may be copied or reproduced in any form without the prior written consent of Altus Sistemas de
Automacio S.A. who reserves the right to carry out alterations without prior advice.

According to current legislation in Brazil, the Consumer Defense Code, we are giving the following information to clients
who use our products, regarding personal safety and premises.

The industrial automation equipment, manufactured by Altus, is strong and reliable due to the stringent quality control
it is subjected to. However, any electronic industrial control equipment (programmable controllers, numerical commands,
etc.) can damage machines or processes controlled by them when there are defective components and/or when a programming
or installation error occurs. This can even put human lives at risk. The user should consider the possible consequences of
the defects and should provide additional external installations for safety reasons. This concern is higher when in initial
commissioning and testing.

The equipment manufactured by Altus does not directly expose the environment to hazards, since they do not issue any kind
of pollutant during their use. However, concerning the disposal of equipment, it is important to point out that built-in electronics
may contain materials which are harmful to nature when improperly discarded. Therefore, it is recommended that whenever
discarding this type of product, it should be forwarded to recycling plants, which guarantee proper waste management.

It is essential to read and understand the product documentation, such as manuals and technical characteristics before its
installation or use. The examples and figures presented in this document are solely for illustrative purposes. Due to possible
upgrades and improvements that the products may present, Altus assumes no responsibility for the use of these examples and
figures in real applications. They should only be used to assist user trainings and improve experience with the products and
their features.

Altus warrants its equipment as described in General Conditions of Supply, attached to the commercial proposals.

Altus guarantees that their equipment works in accordance with the clear instructions contained in their manuals and/or
technical characteristics, not guaranteeing the success of any particular type of application of the equipment.

Altus does not acknowledge any other guarantee, directly or implied, mainly when end customers are dealing with third-
party suppliers. The requests for additional information about the supply, equipment features and/or any other Altus services
must be made in writing form. Altus is not responsible for supplying information about its equipment without formal request.
These products can use EtherCAT® technology (www.ethercat.org).

COPYRIGHTS

Nexto, MasterTool, Grano and WebPLC are the registered trademarks of Altus Sistemas de Automacdo S.A.
Windows, Windows NT and Windows Vista are registered trademarks of Microsoft Corporation.

OPEN SOURCE SOFTWARE NOTICE

To obtain the source code under GPL, LGPL, MPL and other open source licenses, that is contained in this product, please
contact opensource @altus.com.br. In addition to the source code, all referred license terms, warranty disclaimers and copyright
notices may be disclosed under request.

www.ethercat.org
opensource@altus.com.br

CONTENTS

Contents

1. Introduction o e e e e e e e e 1
1.1. Nexto Series o e e e e e e e e e e 1
1.2. Innovative Features e e 2
1.3. Documents Related to this Manual 3
1.4, VisualInspection L e e e 5
1.5. Technical SUppOIt e e e e e e e e e 5
1.6. Warning Messages Used inthisManual 5

2. Technical Description e e e e 6
2.1. Panels and Connections e e e e e e e e e 6
2.2. General Features L e e 7

2.2.1. Common General Features 7
2.2.2. Standards and Certifications 9
2.2.3. MemOTry e e e e e e 10
2.2.4. Protocols e e 12
2.2.5. Serial Interfaces L e e 12
2.2.5.1. COM 1 . e e e 12

2.2.5.2. COM 2 . . e 13

2.2.6. Ethernet Interfaces e 13
2.2.6.1. NET 1 . . . e e e 13

2.2.6.2. NET 2 . . . e e e 14

2.2.7. Memory Card Interface 14
2.2.8. Environmental Characteristics e 15

2.3. Compatibility with Other Products e 15
2.4, Performance e e e e 15
24.1. MainTask Interval Time e 15
24.2. Application Times L e 16
2.4.3. Time for Instructions Execution 16
2.4.4. Initialization Times e 16

2.5. Physical Dimensions e 17
2.6. Purchase Data e 18
2.6.1. Included Itens e 18
2.6.2. Productcode e 18

2.7. Related Products e e e e 18

3. Imstallation e e e e e e e e e e e e e e 20
3.1. Mechanical Installation e e e e e 20
3.2. Electrical Installation e e 20
3.3. Ethernet Network Connection ittt e e 21

3.3.1. IPAddress o e e 21
I altus

CONTENTS

3.3.2. Gratuitous ARP e e 22
3.3.3. Network Cable Installation 22
34. Serial Network Connection RS-232 23
34.1. RS-232C Communication v it e e e e 24
3.5. Serial Network Connection RS-485/422 e 24
35.1. RS-485 Communication without termination 25
3.5.2. RS-485 Communication with Internal Termination 26
3.5.3. RS-485 Communication with External Termination 27
3.5.4. Example of Connection of a RS-485 Network with External Termination and Master Redun-
dancy e e 28
3.5.5. RS-422 Communication without Termination 28
3.5.6. RS-422 Communication with Internal Termination 29
3.5.7. RS-422 Communication with External Termination 30
3.5.8. RS-422 Network Example 30
3.6. Memory Card Installation e 31
3.7. Architecture Installation e 32
3.7.1. Module Installation on the Main Backplane Rack 32
3.8. Programmer Installation e 32
4. Initial Programming e e e e 33
4.1. Memory Organization and ACCESS o v v vttt e e e 33
4.2. ProjectProfiles 35
4.2.1. Single 35
42.2. Basic . . .o e e 36
4.2.3. Normal e e 36
4.2.4. Expert e e 36
4.2.5. CUSIOM . . . s e e e e e e e e e 37
4.2.6. Machine Profile e 37
4.2.7. General Table e 38
4.2.8. Maximum Numberof Tasks L 38
4.3, CPUConfigurationo i ittt it e e e 39
4.4, Libraries o e e e e e e e e e 40
4.5. Imserting aProtocol Instance L 40
4.5.1. MODBUS Ethernet e 40
4.6. Findingthe Device L e e e 42
477, LOZIN . . . e e e e e e 44
4.8. RunMode e e e 46
4.9. StopModeo 47
4.10. Writing and Forcing Variableso 48
411, Logout e e e e e e e 48
4.12. ProjectUpload L 49
4.13. CPUOperating States ot v vttt e e e e e e 50
4131, Run . ..o e e 50
4132, StOP . . o e e e 50
4.13.3. Breakpoint L e e e e e e 50
4134, EXCePtion e e e e e e e e 51
4.13.5. ResetWarm 51
4.13.6. ResetCold e e e 51
4.13.7. ResetOrigen e 51
“I altus

CONTENTS

4.13.8. Reset Process Command (IEC 60870-5-104) 51
4.14. Programs (POUs) and Global Variable Lists (GVLs) 51
4.14.1. MainPrg Program e 51
4.14.2. StartPrg Program L. 52
4.14.3. UserPrg Program e 52
4.14.4. GVL System_Diagnostics o e 52
4.14.5. GVLDisables e e e e e 53
4.14.6. GVLIOQualities 54
4.14.77. GVL Module_Diagnostics o e e 54
4.14.8. GVLQualities e 55
4.14.9. GVL RegDiagnostics i i i e e e 57
4.14.10. Prepare_Start Function e 59
4.14.11. Prepare_Stop Function e 59
4.14.12. Start_Done Function e e e 59
4.14.13. Stop_Done Function 59

5. Configuration e e e e e 60

5000 Device e e 60
5.1.1. User Management and Access Rights00, 60
5.1.2. PLC Settings e 60

5.2. CPU Configuration it e e e e e e e e e e e 62
5.2.1. General Parameters 62

5.2.1.1. HotSwap e e 63
5.2.1.1.1. Hot Swap Disabled, for Declared ModulesOnly 64

5.2.1.1.2. HotSwap Disabled, 64

5.2.1.1.3. Hot Swap Disabled, without Startup Consistency 64

5.2.1.1.4. Hot Swap Enabled, with Startup Consistency for Declared Modules Only . 65

5.2.1.15. Hot Swap Enabled with Startup Consistency 65

5.2.1.1.6. Hot Swap Enabled without Startup Consistency 65

5.2.1.1.7. Howtodothe HotSwap 65

5.2.1.2. Retain and Persistent Memory Areaso e 67
5.2.1.3. Project Parameters e 69

5.2.2. External Event Configuration L e 69
5.2.3. SOE Configuration it e e e e 71
5.2.4. Time Synchronization 73
5.24.1. IEC 60870-5-104 e 74
5.24.2. SNTP . . 75
5.24.3. Daylight Saving Time (DST) 75

5.2.5. Internal Points 76
5.2.5.1. Quality CONVersions v v v v v i e e e e e e e e e 77
5.2.5.1.1. Internal Quality L 78

5.2.5.1.2. IEC 60870-5-104 Conversion 79

5.2.5.1.3. MODBUS Internal Quality 80

5.2.5.14. Local Bus I/O Modules Quality 81

5.2.5.1.5. PROFIBUS I/O Modules Quality 81

5.2.5.1.6. PROFIBUS Digital Inputs Quality 82

5.2.5.1.7. PROFIBUS Digital Output Quality 83

5.2.5.1.8. PROFIBUS Analog Inputs Quality 84

5.2.5.1.9. PROFIBUS Analog Output Quality 86

v altus

CONTENTS

5.3. Serial Interfaces Configuration L o 87

5.3.1. COM 1 . . 87

5.3.1.1. Advanced Configurations e 89

5.3.2. COM2 . . 90

5.3.2.1. Advanced Configurations e 91

5.4. Ethernet Interfaces Configuration L L 91

54.1. Internal Ethernet Interfaces L 91

54.1.1. NET 1 . . 91

54.1.2. NET 2 . . 92

54.2. NX5000 Remote Ethernet Interfaces 92

54.2.1. NET 1 92

5.4.22. Operation Mode of the NX5000 Remote Ethernet Interface 92

5422.1. RedundantMode, 92

5.4.3. Reserved TCP/UDP Ports 93

5.5. Protocols Configuration L e 94

5.5.1. Protocol Behavior x CPU State 96

5.5.2. Double Points e 97

5.5.3. CPU’s Events Queue i it e e e 97

5.5.3.1. CONSUMETS vt et e e e e e e e e e e e e e e 98

5.5.3.2. Queue Functioning Principles oL 98

5.5.3.2.1. Overflow Sign e 99

5.5.3.3. Producers 99

5.5.4. Interception of Commands Coming from the Control Center 99

5.5.5. MODBUS RTUMaSter oo v oo ot e e e e e e e e e e e e e e 104

5.5.5.1. MODBUS Master Protocol Configuration by Symbolic Mapping 104
5.5.5.1.1. MODBUS Master Protocol General Parameters — Symbolic Mapping Con-

figuration 104

5.5.5.1.2. Devices Configuration — Symbolic Mapping configuration 107

5.5.5.1.3. Mappings Configuration — Symbolic Mapping Settings 108

5.5.5.14. Requests Configuration — Symbolic Mapping Settings 109

5.55.2. MODBUS Master Protocol Configuration for Direct Representation (%Q) 114
5.5.5.2.1. General Parameters of MODBUS Master Protocol - setting by Direct Rep-

resentation (%Q) 114

5.5.5.2.2. Devices Configuration — Configuration for Direct Representation (%Q) . . . 115

5.5.5.2.3. Mappings Configuration — Configuration for Direct Representation (%Q) . . 116

5.5.6. MODBUSRTU SIaveottt et e e e e e e 118

5.5.6.1. MODBUS Slave Protocol Configuration via Symbolic Mapping 118
5.5.6.1.1. MODBUS Slave Protocol General Parameters — Configuration via Sym-

bolicMapping 118

5.5.6.1.2. Configuration of the Relations — Symbolic Mapping Setting 122

5.5.6.2. MODBUS Slave Protocol Configuration via Direct Representation (%Q) 123
5.5.6.2.1. General Parameters of MODBUS Slave Protocol — Configuration via Di-

rect Representation (%Q) 123

5.5.6.2.2. Mappings Configuration — Configuration via Direct Representation (%Q) . 124

5.5.7. MODBUS Ethernet 126

5.5.8. MODBUS Ethernet Clientttt 128

5.5.8.1. MODBUS Ethernet Client Configuration via Symbolic Mapping 128
5.5.8.1.1. MODBUS Client Protocol General Parameters — Configuration via Sym-

bolicMapping 129

v altus

CONTENTS

5.5.9.

5.5.8.1.2. Device Configuration — Configuration via Symbolic Mapping 130
5.5.8.1.3. Mappings Configuration — Configuration via Symbolic Mapping 132
5.5.8.1.4. Requests Configuration — Configuration via Symbolic Mapping 134
5.5.8.2. MODBUS Ethernet Client configuration via Direct Representation (%Q) 138
5.5.8.2.1. General parameters of MODBUS Protocol Client - configuration for Direct
Representation (%Q) 138
5.5.8.2.2. Device Configuration — Configuration via Direct Representation (%Q) . . . 139
5.5.8.2.3. Mapping Configuration — Configuration via Direct Representation (%Q) . . 140
5.5.8.3. MODBUS Client Relation Start in AcyclicForm 142
MODBUS Ethernet Server e 142
5.5.9.1. MODBUS Server Ethernet Protocol Configuration for Symbolic Mapping 143
5.5.9.1.1. MODBUS Server Protocol General Parameters — Configuration via Sym-
bolicMapping e 143
5.5.9.1.2. MODBUS Server Diagnostics — Configuration via Symbolic Mapping . . . 145
5.5.9.1.3. Mapping Configuration — Configuration via Symbolic Mapping 146

5.59.2. MODBUS Server Ethernet Protocol Configuration via Direct Representation (%Q) 147
5.5.9.2.1. General Parameters of MODBUS Server Protocol — Configuration via Di-

rect Representation (%Q) 148

5.59.2.2. Mapping Configuration — Configuration via Direct Representation (%Q) . . 149
5.5.10. OPC DA Server i ittt e e 151
5.5.10.1. Creating a Project for OPC DA Communication 153
5.5.10.2. Configuring a PLC onthe OPC DA Server 156
5.5.10.2.1. Importing a Project Configuration 158
5.5.10.3. Configuration with the PLC on the OPC DA Server with Connection Redundancy . 158
5.5.10.4. OPC DA Communication Status and Quality Variables 159
5.5.10.5. Limits of Communication with OPC DA Server 161
5.5.10.6. Accessing Data Through an OPCDAClient 161
55110 OPCUA Servero i i e e e e e e e e 163
5.5.11.1. Creating a Project for OPC UA Communication 164
5.5.11.2. Types of Supported Variables 166
5.5.11.3. Limit Connected Clients on the OPC UA Server 166
5.5.11.4. Limit of Communication Variables on the OPC UA Server 166
5.5.11.5. Encryption Settings 166
5.5.11.6. Main Communication Parameters Adjusted in an OPC UA Client 167
5.5.11.6.1. Endpoint URL 167
5.5.11.6.2. Publishing Interval (ms) e Sampling Interval (ms) 167
5.5.11.6.3. Lifetime Count e Keep-Alive Count 168
5.5.11.6.4. Queue Size e Discard Oldest 168
5.5.11.6.5. Filter Type e Deadband Type 168
5.5.11.6.6. PublishingEnabled, MaxNotificationsPerPublish e Priority 168
5.5.11.7. Accessing Data Throughan OPCUA Client 169
5.5.12. EtherCAT Master i e e e e e e e e 170
5.5.12.1. Installing and inserting EtherCAT Devices 170
5.5.12.1.1. EtherCAT - Scan For Devices 171
5.5.12.2. EtherCAT Master Settings v v v i i et e 172
5.5.12.2.1. EtherCAT Master Parameters 172
5.5.12.2.2. EtherCAT Master - Sync Unit Assignment 173
5.5.12.2.3. EtherCAT Master - Overview oo o v vt v v v oo 173
5.5.12.2.4. EtherCAT Master - /O Mapping 173

Vi altus

CONTENTS

5.5.12.2.5. EtherCAT Master - Status / Information Tabs 174

5.5.12.3. EtherCAT Slave Configuration 174
5.5.12.3.1. EtherCAT Slave - General 174

5.5.12.3.2. EtherCAT Slave - ProcessData 178

5.5.12.3.3. EtherCAT Slave - Edit PDO List 180

5.5.12.3.4. EtherCAT Slave - Startup Parameters 180

5.5.12.3.5. EtherCAT Slave - I/OMapping 180

5.5.12.3.6. EtherCAT Slave - Status and Information. 181

5.5.13. EtherNet/IP e 181
5.5.13.1. EtherNet/IP e 182
5.5.13.2. EtherNet/IP Scanner Configuration 184
5.5.13.2.1. General e 184

5.5.13.2.2. Connections e e e 185

5.5.13.2.3. Assemblies 187

5.5.13.24. EtherNet/IPI/OMapping i 188

5.5.13.3. EtherNet/IP Adapter Configuration 188
5.5.13.3.1. General e 188

5.5.13.3.2. EtherNet/IP Adapter: /O Mapping 189

5.5.13.4. EtherNet/IP Module Configuration 189
5.5.13.4.1. Assemblies L 190

5.5.13.4.2. EtherNet/IP Module: /O Mapping 190

5.5.14. IEC60870-5-104 Server o o i i it e e 190
5.5.14.1. Typeofdata e 190
5.5.142. DoublePoints 192
5.5.14.2.1. Digital Input Double Points 192

5.5.14.2.2. Digital Output Double Points 194

5.5.14.3. General Parameters 199
5.5.144. DataMapping e e e e e e 199
5.5.145. LinkLayer. e 201
5.5.14.6. Application Layer 203
5.5.1477. Server Diagnostic e 205
5.5.14.8. Commands Qualifier 206

5.5.15. PROFINET Controller e e e e e e e e e 207
5.6. Communication Performance 207
5.6.1. MODBUS Server 207
5.6.1.1. CPU’s Local Interfaces it 207
5.6.1.2. Remote Interfaces 208

5.6.2. OPC DA Server o i ittt i s e e e e e e 209
5.6.3. OPCUA SEIVer o i v it i it e e e e e e e e e 209
5.6.4. IEC60870-5-104 Server o o ot e e 209
5.7. System Performance 209
5.7.1. I/OScanTime e e e e e 210
5.7.2. Memory Card e e e 210
5.8. RTCClock 210
5.8.1. Function Blocks for RTC Reading and Writing 211
5.8.1.1. Function Blocks for RTCReading 211
5.8.1.1.1. GetDateAndTime 212

5.8.1.1.2. GetTimeZone i e 212

Vi altus

CONTENTS

5.8.1.1.3. GetDayOfWeek 213

5.8.1.2. RTC Writing Functions i 214

5.8.1.2.1. SetDateAndTime 214

5.8.1.2.2. SetTimeZone 215

5.8.2. RTC Data Structures o v v vttt e e et e e e 216
5.8.2.1. EXTENDED_DATE_AND_TIME 217

5.8.2.2. DAYS_OF_WEEK e 217

5.8.2.3. RTC_STATUS s e e e 217

5.8.2.4. TIMEZONESETTINGS et 218

5.9. User Files Memory e 218
5.10. Memory Card oL e e e 220
5.10.1. Project Preparation e e e e 220
5.10.2. Project Transfer e e e 221
5.103. MasterTool ACCESS v v v i e e 222
5.11. CPU’s Informative and Configuration Menu 222
5.12. Function Blocks and Functions e 225
5.12.1. Special Function Blocks for Serial Interfaces 225
5.12.1.1. SERIAL_CFG e e e e 229

5.12.1.2. SERIAL_GET_CFG e et 231

5.12.1.3. SERIAL_GET _CTRL i 232

5.12.1.4. SERIAL_GET_RX_QUEUE_STATUS 234

5.12.1.,5. SERIAL_PURGE _RX _QUEUE 236

5.12.1.6. SERIAL_RX e 237

5.12.1.7. SERIAL_RX EXTENDED i 239

5.12.1.8. SERIAL_SET_CTRL st 241

5.12.1.9. SERIAL_TX 243

5.12.2. Inputs and Outputs Update 245
5.12.2.1. REFRESH_INPUT e 245

5.12.2.2. REFRESH_OUTPUT i 247

5.123. PIDFunctionBlock 248
5.12.4. TimerRetain e 248
5.12.4.1. TOF_RET e 249

5.12.42. TON_RET e 250

5.1243. TP_RET o e 251

5.12.5. Non-Redundant Timer e 252
5.12.5.1. TOF_NR e 253

51252, TON_NR . . . o e 253

5.1253. TP_NR e 254

5.12.6. UserLog o o o e e e 255
5.12.6.1. UserLogAdd e 255

5.12.6.2. UserLogDeleteAll e 257

5.1277. ClearRtuDiagnostic e 258
5.12.8. ClearEventQueue e e 258
513, SNMP . . o 259
5.13.1. Introduction e e e e e e e 259
5.132. SNMPnasUCPsNexto o e ettt e e 259
5.133. Private MIB L e 260
5.13.4. SNMP Configuration i it e e e e e e e 260

Vi altus

CONTENTS

5.13.5. User and SNMP Communities vttt 262
6. Redundancy with NX3030 CPU e 263
6.1. Introduction L e e e e 263
6.2. Technical Description and Configuration vt 264
6.2.1. Minimum Configuration of a Redundant CPU (Not Using PX2612 Panel) 264
6.2.2. Typical Configurations of a Redundant CPU 265
6.2.2.1. NX5001 Modules Addition for PROFIBUS Networks 266
6.2.2.2. NX5000 Modules Addition for Ethernet Networks 266

6.2.3. NX4010Module 266
6.2.3.1. NX4010 Features o e e 267

6.2.4. Redundancy Control Panel PX2612 o ... 267
6.2.4.1. PX2612 Features e 268

6.2.5. Interconnections between Half-Clusters and the Redundancy Control Panel PX2612 269
6.2.6. General Characteristics of aRedundantCP 270
6.2.7. Purchase Data 273
6.3. Principles of Operation L e 274
6.3.1. Identification of an NX3030CPU e 274
6.3.2. Single Redundant Project 274
6.3.3. Redundant Project Structure 274
6.3.3.1. Redundancy Template 274
6.3.3.2. Single and Cyclic Task MainTask 274
6.3.3.3. MainPrg Program 274
6.3.34. ActivePrg Program 275
6.3.3.5. NonSkippedPrg Program 275
6.3.3.6. Redundant and Non-redundant Variables 276
6.3.3.7. Redundant and Non-redundant %I Variables 276
6.3.3.8. Redundant and Non-redundant %Q Variables 276
6.3.3.9. Redundant and Non-redundant %M Variables 277
6.3.3.10. Redundant and Non-redundant Symbolic Variables 278

6.3.4. Multiple Mapping o o e e e e e e 278
6.3.5. Diagnostics, Commands and User Data Structure 279
6.3.6. Cyclic Synchronization Services through NETAand NETB 280
6.3.6.1. Diagnostics and Commands Exchange 280
6.3.6.2. Redundant Data Synchronization 280
6.3.6.3. Redundant Forcing List Synchronization 281

6.3.7. Sporadic Synchronization Services through NETAand NETB 281
6.3.7.1. Project Synchronization L L 281

6.3.8. Project Synchronization Disabling 282
6.3.9. PROFIBUS Network Configuration 283
6.3.9.1. PROFIBUS Redundancy 283
6.3.9.2. PROFIBUS Failure Modes Vital and Not-Vital 283

6.3.10. Redundant Ethernet Networks with NIC Teaming 283
6.3.11. TP Change Methods e 284
6.3.11.1. FixedIP e 284
6.3.11.2. ExchangeIP L 284
6.3.11.3. ActiveIP e 285
6.3.11.4. MultipleIP e 286

6.3.12. NIC Teaming and Active IP CombinedUse 287
X altus

CONTENTS

6.3.13. Ethernet Interfaces Use with Vital Fault Indication 287
6.3.13.1. Failure in Ethernet Interface 287
6.3.13.2. Failure in Connected MODBUS Server. 287

6.3.14. OPC DA Communication Use with Redundant Projects 287

6.3.15. Redundant CPU States 288
6.3.15.1. Not-Configured State e 288
6.3.15.2. Starting State 289
6.3.153. Active State L. 289
6.3.15.4. Stand-By State 289
6.3.15.5. Inactive State e e 289

6.3.16. PX2612 Redundancy Command Panel Functions 290
6.3.16.1. PX2612Buttons e 290
6.3.16.2. PX2612LEDs e e 291
6.3.16.3. PX2612Relays 291

6.3.17. Transition between Redundancy States 291
6.3.17.1. Transition 1 — Not-Configured to Starting 292
6.3.17.2. Transition 2 — Starting to Not-Configured 293
6.3.17.3. Transition 3 — Starting to Inactive Lo 293
6.3.17.4. Transition 4 — Starting to Activeo 293
6.3.17.5. Transition 5 — Starting to Stand-by oL 293
6.3.17.6. Transition 6 — Inactive to Not-Configured 293
6.3.17.7. Transition 7 — Active to Not-Configured 293
6.3.17.8. Transition § — Activeto Inactive Lo 294
6.3.17.9. Transition 9 — Activeto Stand-by oL 294
6.3.17.10. Transition 10 — Stand-by to Not-Configured 294
6.3.17.11. Transition 11 — Stand-by to Inactive 294
6.3.17.12. Transition 12 — Stand-by to Activeo 294

6.3.18. FirstInstantsin Active State 294

6.3.19. Common Failures which Cause Automatic Switchovers between Half-Clusters 295

6.3.20. Failures Associated to Switchovers between Half-Clusters Managed by the User 295

6.3.21. FaultTolerance 296
6.3.21.1. Simple Failure with Unavailability 297
6.3.21.2. Simple Failure without Unavailability Causing a Switchover 297
6.3.21.3. Double Failure without Unavailability Causing a Switchover 297

6.3.22. Redundancy Overhead 298

6.4. Redundant CPU Programming e 298

6.4.1. Wizard for a New Redundant Project Creation 298

6.4.2. Half-Clusters Configuration ittt 303
6.4.2.1. Fixed Configuration in the O to 5 Rack Positions 303

6.4.3. Ethernet Ports Configuration in the CPU NX3030 (NET 1 and NET2) 303
6.4.3.1. IP Address Configuration 303
6.4.3.2. NIC Teaming between NET 1and NET2 304
6.4.3.3. Vital failure settingin NET 1and NET2 304

6.4.4. NX5001 Modules Configuration 305
6.4.4.1. Insertion or Removal of NX5001 modules 305
6.4.4.2. NX5001 Modules Parameters Adjust, 305
6.4.4.3. PROFIBUS Remotes Configuration 306

6.4.5. NX5000 Modules Configuration i 307

X altus

CONTENTS

6.5.

6.4.5.1. NX5000 Modules Insertion or Removal 307
6.4.5.2. NX5000 Modules Configuration 307
6.4.5.3. NX5000 Modules Grouping with NIC Teaming Redundancy 307
6.4.5.3.1. Failure Vital Setting 307
6.4.6. NX4010 Redundancy Configuration v vt 307
6.4.7. I/O Drivers Configuration o i 308
6.4.8. MainTask Configuration e 308
6.4.8.1. ActivePrg Program L 309
6.4.8.2. NonSkippedPrg Program L. 309
6.4.9. Redundancy Configuration Object 310
6.4.10. GVL Module_Diagnostics o o v i e e e e e 310
6.4.11. GVLs with Redundant Symbolic Variables 310
6.4.12. POUs from the Program Type with Redundant Symbolic Variables 311
6.4.13. Breakpoints Utilization in Redundant Systems 311
6.4.14. MODBUS Instances Managing in Redundant System 311
6.4.15. Limitations on a Redundant PLC Programming 312
6.4.15.1. Limitations in Redundant GVLsand POUs 312
6.4.15.2. Non-redundant Program Limitations (NonSkippedPrg) 312
6.4.16. Getting the Redundancy State of a Half-Cluster 312
6.4.17. Reading Non-Redundant Diagnostics, 312
Redundant CPU Program Downloading 313
6.5.1. Initial Downloading of a Redundant Project 313
6.5.1.1. First Step — IP Address Discovering for MasterTool Connection. 313
6.5.1.2. Second Step — Verifying IP Addresses Conflict 314
6.5.1.3. Third Step — Preparing MasterTool Connection (Set Active Path) 314
6.5.1.4. Forth Step — Identifying the NX3030 CPU and Verifying the CPU Display 314
6.5.1.5. Fifth Step — Redundant Project Downloading 315
6.5.2. MasterTool Connection with a NX3030 CPU from a RedundantPLC 316
6.5.3. Modification Download in a Redundant Project 316
6.5.4. Offline and Online Modifications Download 316
6.54.1. Modifications which Demand Offline Download and the Interruption of the Pro-
cessControl 317
6.5.4.2. Modifications which Demand Offline Download 317
6.5.4.3. Modifications which Allow Online Download 317
6.5.5. Online Download of Modifications 318
6.5.6. Offline Download of Modifications with Process Control Interruption 318
6.5.7. Previous Planning for Offline Modifications without Process Control Interruption 319
6.5.7.1. Previous Planning for Hot Modifications in Redundant PROFIBUS Networks . . . 319
6.5.7.1.1. Step 1 — Plan Future Expansion of the Remotes Inserted in the PROFIBUS
Network Initial Version oL 319
6.5.7.1.2. Step 2 — Insert the Redundant PROFIBUS Network Initial Version in the
Project 320
6.5.7.1.3. Step 3 — Allocate %I and %Q Variables Areas for the PROFIBUS Network
considering Future Remote Expansion 320
6.5.7.2. Previous Planning for Other Hot Modifications 321
6.5.7.3. Incompatibility of Applications 322
6.5.74. Project Update due to MasterTool IEC XE Update 322

6.5.74.1. Updating Project from Versions Previous to 2.00 to version 2.00 or Higher . 322

CONTENTS

6.5.8. Exploring the Redundancy for Offline downloading of Modifications without Interruption of
the Processcontrol 323
6.5.8.1. Step 1 — Verify Basic Requirements Attending 323
6.5.8.2. Step 2 — Don’t Download in Group Modifications which can be downloaded Online 324
6.5.8.3. Step 3 — Previous Project Backup oL 324
6.5.8.4. Step 4 — Cares in Editing the Offline Downloaded Modifications 324
6.5.8.5. Step 5 — Inactive PLC Project Synchronism Disabling 324
6.5.8.6. Step 6 — Physical Modifications Executing 325
6.5.8.7. Step 7 — Download the Offline Modifications in the Non-Active PLC 325
6.5.8.8. Step 8 — Set the Non-Active PLC Back to Run Mode to make go back to Stand-by
State e e e 325
6.5.8.9. Step 9 — Execute Switchover between Active and Stand-by PLCs 325
6.5.8.10. Step 10 — Projects Synchronism Enabling in the Active PLC 326
6.5.8.11. Step 11 — Optional Reorganization of PLC and PROFIBUS Networks in Active State326
6.6. Redundancy Maintenance it e e e e e e e e 326
6.6.1. Modules Hot Swapping in a Redundant PLC 326
6.6.2. MasterTool Warning Messages o vttt e 326
6.6.2.1. Blocking of Redundant or Non-Redundant Project Download 326
6.6.2.2. Warnings before Commands which may stop the Active PLC 326
6.6.2.3. Alert before Logging in to Non-Active CP 327
6.6.3. Redundancy Diagnostics on NX3030 CPU Graphic Display 327
6.6.3.1. CP Redundancy Status 327
6.6.3.2. Screens below the REDUNDANCY Menu 327
6.6.4. Redundancy Diagnostics Structure e 327
6.6.4.1. Redundancy Diagnostics L 328
6.6.4.2. Redundancy Commands L 338
6.6.4.3. User Information Exchanged between PLCAand PLCB 341
6.6.4.4. Modbus Diagnostics used at Redundancy 342
6.6.4.5. Redundancy EventLog 342
6.6.5. PX2612Panel Test. e 342
6.6.5.1. Test Mode Entry e 343
6.6.5.2. Test Mode Manual and Automatic Outputs 343
6.6.5.3. LEDs Testing o o i i i it e e e e e 343
6.6.5.4. Buttons Test 343
6.6.5.5. Relay Test L e 343
6.6.5.6. Suggested Sequence for PX2612 Test Executing 344
7. Maintenance e e e e e e e e e e e e e e e 345
7.1. Module Diagnostics L. e e 345
7.1.1. One Touch Diag e 345
7.1.2. Diagnostics viaLED L 347
7.1.2.1. DG (Diagnostic) o . o e e e e e e e 347
7.1.2.2. WD (Watchdog) e 348
7.1.2.3. RJ45 Connector LEDs 348
7.1.3. Diagnostics via System Web Page 348
7.1.4. Diagnostics via Variables L. 350
7.1.4.1. Summarized Diagnostics oL 351
7.14.2. Detailed Diagnostics L e 354
7.1.5. Diagnostics via Function Blocks L 364
Xt altus

CONTENTS

7.1.5.1. GetTaskInfo 364

7.2. Graphic Display e 365
7.3. System Log e e e e 367
7.4. NotLoading the Application at Startup o e e e 368
7.5. Power Supply Failure e e 368
7.6. Common Problems 368
7.7. Troubleshooting 369
7.8. Preventive Maintenance it e e e e e e e e e e e e e e 369
8. Annex. DNP3 Interoperability e e 370
8.1. DNP3 Device Profile e 370
8.2. DNP V3.0 Implementation Table 371

1. INTRODUCTION

1. Introduction

Nexto Series programmable controllers are the ultimate solution for industrial automation and system control. With high
technology embedded, the products of the family are able to control, in a distributed and redundant way, complex industrial
systems, machines, high performance production lines and the most advanced processes of Industry 4.0. Modern and high-
speed, the Nexto series uses cutting-edge technology to provide reliability and connectivity, helping to increase the productivity
of different businesses.

Compact, robust and with high availability, the series products have excellent processing performance and rack expan-
sion possibilities. Its architecture allows easy integration with supervision, control and field networks, in addition to PLC
redundancy. The series equipment also offers advanced diagnostics and hot swapping, minimizing or eliminating maintenance
downtime and ensuring a continuous production process.

Figure 1: NX3030

1.1. Nexto Series

Nexto Series is a powerful and complete series of Programmable Controllers (PLC) with exclusive and innovative charac-
teristics. Due to its flexibility, functional design, advanced diagnostic resources and modular architecture, the Nexto PLC can
be used to control systems in small, medium and large scale applications.

Nexto Series architecture has a great variety of input and output modules. These modules combined with a powerful proces-
sor and a high speed bus based on Ethernet, fit to several application kinds as high speed control for small machines, complex
distributed processes, redundant applications and systems with a great number of I/O as building automation. Furthermore,
Nexto Series has modules for motion control, communication modules encompassing the most popular field networks among
other features.

Nexto Series uses an advanced technology in its bus, which is based on a high speed Ethernet interface, allowing input and
output information and data to be shared between several controllers inside the same system. The system can be easily divided
and distributed throughout the whole field, allowing the use of bus expansion with the same performance of a local module,
turning possible the use of every module in the local frame or in the expansion frames with no restrictions. For interconnection
between frames expansions a simple standard Ethernet cable is used.

\

1. INTRODUCTION

Lusvad

Figure 2: Nexto Series — Overview

1.2. Innovative Features

Nexto Series brings to the user many innovations regarding utilization, supervision and system maintenance. These features
were developed focusing a new concept in industrial automation.

Battery Free Operation: Nexto Series does not require any kind of battery for memory maintenance

.) and real time clock operation. This feature is extremely important because it reduces the system
maintenance needs and allows the use in remote locations where maintenance can be difficult to be
performed. Besides, this feature is environmentally friendly.

The terminal blocks can be easily removed with a single movement and with no special tools. In order
to plug the terminal block back to the module, the frontal cover assists the installation procedure,

=
Easy Plug System: Nexto Series has an exclusive method to plug and unplug I/O terminal blocks.
@ :
fitting the terminal block to the module.

Multiple Block Storage: Several kinds of memories are available to the user in Nexto Series CPUs,
offering the best option for any user needs. These memories are divided in volatile memories and
non-volatile memories. For volatile memories, Nexto Series CPUs offer addressable input (%]I),
addressable output (%Q), addressable memory (%M), data memory and redundant data memory.
For applications that require non-volatile functionality, Nexto Series CPUs bring retain addressable
memory (%Q), retain data memory, persistent addressable memory (%Q), persistent data memory,
program memory, source code memory, CPU file system (doc, PDF, data) and memory card interface.

One Touch Diag: One Touch Diag is an exclusive feature that Nexto Series brings to PLCs. With this

% new concept, the user can check diagnostic information of any module present in the system directly

Olv on CPU’s graphic display with one single press in the diagnostic switch of the respective module.

OTD is a powerful diagnostic tool that can be used offline (without supervisor or programmer), re-
ducing maintenance and commissioning times.

OFD - On Board Full Documentation: Nexto Series CPUs are capable of storing the complete
project documentation in its own memory. This feature can be very convenient for backup purposes
and maintenance, since the complete information is stored in a single and reliable place.

ETD - Electronic Tag on Display: Another exclusive feature that Nexto Series brings to PLCs is
the Electronic Tag on Display. This new functionality brings the process of checking the tag names
of any I/O pin or module used in the system directly to the CPU’s graphic display. Along with this
information, the user can check the description, as well. This feature is extremely useful during
maintenance and troubleshooting procedures.

\

1. INTRODUCTION

DHW - Double Hardware Width: Nexto Series modules were designed to save space in user cabi-
nets or machines. For this reason, Nexto Series delivers two different module widths: Double Width
(two backplane rack slots are required) and Single Width (only one backplane rack slot is required).
This concept allows the use of compact I/O modules with a high-density of I/O points along with
complex modules, like CPUs, fieldbus masters and power supply modules.

High-speed CPU: All Nexto Series CPUs were designed to provide an outstanding performance to
the user, allowing the coverage of a large range of applications requirements.

1.3. Documents Related to this Manual

In order to obtain additional information regarding the Nexto Series, other documents (manuals and technical features)
besides this one, may be accessed. These documents are available in its last version on the site https://www.altus.com.br/en/.

iF Product Design Award 2012: Nexto Series was the winner of iF Product Design Award 2012
in industry + skilled trades group. This award is recognized internationally as a seal of quality and
excellence, considered the Oscars of the design in Europe..

Each product has a document designed by Technical Features (CE), where the product features are described. Furthermore,
the product may have Utilization Manuals (the manuals codes are listed in the CE).

For instance, the NX2020 module has the information for utilization features and purchasing on its CE. On another hand,
the NX5001 has, besides the CE, a User Manual (MU).

It is advised the following documents as additional information source:

Code Description Language
CE114000 Nexto Series — Technical Characteristics English
CT114000 Série Nexto — Caracteristicas Técnicas Portuguese
CE114102 NX3030 Technical Characteristics English
CT114102 Caracteristicas Técnicas NX3030 Portuguese
CE114200 NX8000 Power Supply Module Technical Characteristics English
CT114200 Caracteristicas Técnicas Fonte de Alimentagdo NX8000 Portuguese
CE114700 Nexto Series Backplane Racks Technical Characteristic English
CT114700 Caracteristicas Técnicas dos Bastidores da Série Nexto Portuguese
CE114810 Nexto Series Accessories for Bfac.kplane Rack Technical English

Characteristics
CT114810 Caracteristicas Técnicas Acessorios para Bastidor Série Nexto Portuguese
CE114900 NX4010 Redundancy Link Module Technical Characteristics English
CT114900 Caracteristicas Técnicas do Médulo de Redundancia NX4010 Portuguese
CE114902 Nexto Series PROFIBUS-DP Master Technical Characteristics English
CT114902 Caracteristicas Técnicas do Mestre PROFIBUS-DP da Série Nexto Portuguese
CE114903 Nexto Series Ethernet Module Technical Characteristics English
CT114903 Caracteristicas Técnicas Médulo Ethernet Série Nexto Portuguese
CE114908 | NX5110 and NX5210 PROFIBUS-DP Heads Technical Characteristics English
CT114908 Caracteristicas Técnicas Interfaces Cabega PROFIBUSDP NX5110 e Portuguese
NX5210
Especificaciones y Configuraciones PROFIBUS-DP Interfaz Cabezas .
CS114908 P y gNXSl 10y NX5210 Spanish
CT112500 Caracteristicas Técnicas do Painel de Controle de Redundancia Portugués
PX2612
MU214600 Nexto Series User Manual English
MU214000 Manual de Utilizag@o Série Nexto Portuguese
MU214615 NX3030 CPU User Manual English
MU214103 Manual de Utilizagao UCP NX3030 Portuguese
MU299609 MasterTool IEC XE User Manual English
MU299048 Manual de Utilizagao MasterTool IEC XE Portuguese

https://www.altus.com.br/en/

1. INTRODUCTION

Code Description Language
MP399609 MasterTool IEC XE Programming Manual English
MP399048 Manual de Programagdo MasterTool IEC XE Portuguese
MU214601 NX5001 PROFIBUS DP Master User Manual English
MU214001 Manual de Utilizagao Mestre PROFIBUS-DP NX5001 Portuguese
MU214608 Nexto PROFIBUS-DP Head Utilization Manual English
MU214108 Manual de Utilizacdo da Cabeca PROFIBUS-DP Nexto Portuguese
MU219000 Ponto Series Utilization Manual English
MU209000 Manual de Utilizagdo da Série Ponto Portuguese

Manual de Utilizagdo Cabega PROFIBUS PO5063V1 e Cabeca
MU209508 Redundante PROFIBUS POS063VS i Portguese
MU219511 PO5064 PROFIBUS Head qu PQSOéS Redundant PROFIBUS Head English
Utilization Manual
Manual de Utilizacdo Cabe¢ca PROFIBUS PO5064 e Cabeca

MU209511 Redundante PROFIBUS POS065 i Portuguese
MU209020 Manual de Utilizacdo Rede HART sobre PROFIBUS Portuguese
MU223603 IEC 60870-5-104 Server Device Profile Document English
MU214603 Nexto Series HART Manual English
MU214606 MQTT User Manual English
MU214609 OPC UA Server for Altus Controllers User Manual English
MU214610 Advanced Control Functions User Manual English
MU214621 Nexto Series PROFINET Manual English

NAP151 Utilizagdo do Tunneller OPC Portuguese

Table 1: Related Documents

altus

1. INTRODUCTION

1.4. Visual Inspection

Before resuming the installation process, it is advised to carefully visually inspect the equipment, verifying the existence
of transport damage. Verify if all parts requested are in perfect shape. In case of damages, inform the transport company or
Altus distributor closest to you.

Before taking the modules off the case, it is important to discharge any possible static energy
accumulated in the body. For that, touch (with bare hands) on any metallic grounded surface
before handling the modules. Such procedure guaranties that the module static energy limits
are not exceeded.

It’s important to register each received equipment serial number, as well as software revisions, in case they exist. This
information is necessary, in case the Altus Technical Support is contacted.

1.5. Technical Support

For Altus Technical Support contact in Sdo Leopoldo, RS, call +55 51 3589-9500. For further information regarding the
Altus Technical Support existent on other places, see https://www.altus.com.br/en/ or send an email to altus @altus.com.br.

If the equipment is already installed, you must have the following information at the moment of support requesting:

= The model from the used equipments and the installed system configuration

= The product serial number

» The equipment revision and the executive software version, written on the tag fixed on the product’s side
= CPU operation mode information, acquired through MasterTool IEC XE

= The application software content, acquired through MasterTool IEC XE

» Used programmer version

1.6. Warning Messages Used in this Manual

In this manual, the warning messages will be presented in the following formats and meanings:

Reports potential hazard that, if not detected, may be harmful to people, materials, environ-
ment and production.

Reports configuration, application or installation details that must be taken into consideration
to avoid any instance that may cause system failure and consequent impact.

Identifies configuration, application and installation details aimed at achieving maximum
operational performance of the system.

\

https://www.altus.com.br/en/
altus@altus.com.br

2. TECHNICAL DESCRIPTION

2. Technical Description

This chapter presents all technical features from NX3030.

2.1. Panels and Connections
The following figure shows the CPU front panel.

Figure 3: NX3030

As it can be seen on the figure, on the front panel upper part is placed the graphic display used to show the whole system
status and diagnostics, including the specific diagnostics of each module. The graphic display also offers an easy-to-use menu
which brings to the user a quick mode for parameters reading or defining, such as: inner temperature (reading only) and local
time (reading only).

Just below the graphic display, there are 2 LEDs used to indicate alarm diagnostics and watchdog circuit. The table below
shows the LEDs description. For further information regarding the LEDs status and meaning, see Diagnostics via LED section.

LED Description
DG Diagnostics LED
WD Watchdog LED

Table 2: LEDs Description

Nexto Series CPUs has two switches available to the user. The table below shows the description of these switches. For
further information regarding the diagnostics switch, see sections One Touch Diag and CPU’s Informative and Configuration
Menu. For further information regarding the MS switch, see section Memory Card.

\

2. TECHNICAL DESCRIPTION

Keys

Description

Diagnostics Switch

Switch placed on the module upper part. Used for diagnostics vi-
sualization on the graphic display or for navigation through the in-
formative menu and CPU configuration.

MS

Switch placed on the frontal panel. Used to securely remove the
memory card.

Table 3: Keys Description

On the frontal panel the connection interfaces of Nexto Series CPUs are available. The table
description of these interfaces.

below presents a brief

Interfaces

Description

NET 1

RJ45 communication connector 10/100Base-TX stan-
dard. Allows the point to point or network communi-
cation. For further utilization information, see Ethernet
Interfaces Configuration section.

NET 2

RJ45 communication connector 10/100Base-TX stan-
dard. Allows the point to point or network. For further
utilization information, see Ethernet Interfaces Configu-
ration section.

COM 1

DB9 female connector for RS-232 communication stan-
dard. Allows the point to point or network. For further
utilization information, see Serial Interfaces Configura-
tion section.

COM 2

For further utilization information, see Serial Interfaces
Configuration section.

MEMORY
SLOT

Memory card slot. Allows the use of a memory card for
different types of data storage such as: user logs, project
documentation and files. For further utilization informa-
tion, see Memory Card section.

Table 4: Connection Interfaces

2.2. General Features
2.2.1. Common General Features
NX3030
Backplane rack occupation 2 sequential slots
Power supply integrated No
Ethernet TCP/IP local interface 2
Serial Interface 2
CAN Interface No
USB Port Host No
Memory Card Interface Yes
Real time clock (RTC) Yes . ,
Resolution of 1 ms and maximum variance of 2 s per
day.
Watchdog Yes
7

altus

2. TECHNICAL DESCRIPTION

NX3030

Graphic display

Status and diagnostic Indication LEDs

System Web Page

CPU internal memory
Structured Text (ST)
Programming languages Ladder Diagram (LD)
Sequential Function Chart (SFC)
Function Block Diagram (FBD)
Continuous Function Chart (CFC)
Cyclic (periodic)

Tasks Event (software interruption)
External (hardware interruption)
Freewheeling (continuous)
Status (software interruption)

Online changes Yes
Maximum number of tasks 32
Maximum number of expansion bus 24
Bus expansion redundancy support Yes
Maximum number of I/O modules on the bus 128
Maximum number of additional Ethernet 6
TCP/IP interface modules
Ethernet TCP/IP interface redundancy sup- Yes
port
Maximum number of PROFIBUS-DP network 4
(using master modules PROFIBUS-DP)
PROFIBUS-DP network redundancy support Yes
Redundancy support (half-clusters) Yes
Hot Swap support Yes
Event oriented data reporting (SOE) Yes
Protocol DNP3
Maximum Event Queue Size 1000
Web pages development (available through the No
HTTP protocol)
One Touch Diag (OTD) Yes
Electronic Tag on Display (ETD) Yes
Table 5: Common Features
Notes:

Real Time Clock (RTC): The retention time, time that the real time clock will continue to update the date and time after
a CPU power down, is 15 days for operation at 25 °C. At the maximum product temperature, the retention time is reduced to
10 days.

Maximum number of I/O modules on bus: The maximum number of I/O modules refers to the sum of all modules on
the local bus and expansions.

Event Log (SOE): Data types are found in the DNP3 Device Profile.

8 altus

2. TECHNICAL DESCRIPTION

2.2.2. Standards and Certifications

Standards and Certifications

IEC

61131-2: Industrial-process measurement and control -
Programmable controllers - Part 2: Equipment requirements
and tests

61131-3: Programmable controllers - Part 3: Programming
languages

OVED,
AN
& %

(=)

DNV.COM/AF

DNV Type Approval — DNV-CG-0339 (TAA000013D)

C€

2014/30/EU (EMC)
2014/35/EU (LVD)
2011/65/EU and 2015/863/EU (ROHS)

UK
CA

S.I. 2016 No. 1091 (EMC)
S.I. 2016 No. 1101 (Safety)
S.1. 2012 No. 3032 (ROHS)

CUS

LISTED

UL/cUL Listed — UL 61010-1
UL 61010-2-201 (file E473496)

il

TR 004/2011 (LVD)
CU TR 020/2011 (EMC)

Table 6: Standards and Certifications

altus

2. TECHNICAL DESCRIPTION

2.2.3. Memory

NX3030
Addressable input variables memory (%1I) 96 Kbytes
Addressable output variables memory (% Q) 96 Kbytes
Direct representation variable memory (% M) 64 Kbytes
Symbolic variable memory 6 Mbytes
Persistent or Retain symbolic variables memory 112 Kbytes
Full Redundant Data Memory 736 Kbytes
Direct representation input variable memory (%1I) 80 Kbyte
Direct representation output variable memory (% Q) 80 Kbytes
Direct representation variable memory (% M) 64 Kbytes
Symbolic variable memory 512 Kbytes
Program memory 8 Mbytes
Source code memory (backup) 120 Mbytes
User files memory 32 Mbytes

Table 7: Memory

Notes:

Addressable input variables memory (%]I): Area where the addressable input variables are stored. Addressable variables
means that the variables can be accessed directly using the desired address. For instance: %IB0, %IW100. Addressable input
variables can be used for mapping digital or analog input points. As reference, 8 digital inputs can be represented per byte and
one analog input point can be represented per two bytes.

Total addressable output variables memory (% Q): Area where the addressable output variables are stored. Address-
able variables means that the variables can be accessed directly using the desired address. For instance: %QB0, %QW100.
Addressable output variables can be used for mapping digital or analog output points. As reference, 8 digital outputs can be
represented per byte and one analog output point can be represented per two bytes. The addressable output variables can be
configured as retain, persistent or redundant variables, but the total size is not modified due to configuration.

Nexto Series NX3030 CPU allows the definition of an area of redundant variables into the %Q direct representation output
variables memory area. The subset of memory types of output direct representation variables are part of the total available
memory.

Addressable variables memory (% M): Area where the addressable marker variables are stored. Addressable variables
means that the variables can be accessed directly using the desired address. For instance: %9MB0, %MW 100.

Symbolic variables memory: Area where the symbolic variables are allocated. Symbolic variables are IEC variables
created in POUs and GVLs during application development, which are not addressed directly in memory. Symbolic variables
can be defined as retentive or persistent, in which case the memory areas of retentive symbolic variables or memory of persistent
symbolic variables respectively will be used. The PLC system allocates variables in this area, so the space available for the
allocation of variables created by the user is lower than that reported in the table. The occupation of the system variables
depends on the characteristics of the project (number of modules, drivers, etc...), so it is recommended to observe the space
available in the compilation messages of the MasterTool IEC XE tool.

Persistent or Retain symbolic variables memory: Area where are allocated the retentive symbolic variables. The re-
tentive data keep its respective values even after a CPU’s cycle of power down and power up. The persistent data keep its
respective values even after the download of a new application in the CPU.

The declaration and use of symbolic persistent variables should be performed exclusively
through the Persistent Vars object, which may be included in the project through the tree
view in Application -> Add Object -> Persistent Variables. It should not be used to VAR
PERSISTENT expression in the declaration of field variables of POUs.

The full list of when the symbolic persistent variables keep their values and when the value is lost can be found in the table
below. Besides the persistent area size declared in the table above, are reserved these 44 bytes to store information about the
persistent variables (not available for use).

The table below shows the behavior of retentive and persistent variables for different situations in which “-* means the
value is lost and “X” means the value is kept.

10 altus

——

2. TECHNICAL DESCRIPTION

Command/Operation VAR VAR RETAIN VAR PERSISTENT
Power cycle - X X
Reset warm - X X
Reset cold - - X
Reset origin - - -
Remove CPU with integrated power supply i X X
from the rack while powered on
Remove the power supply or a CPU without
integrated power supply from the rack while - - -
powered on
Download - - X
Online change X X X
Clean All - - X
Reset Process (IEC 60870-5-104) - X X

Table 8: Variables Behavior after the Event

In lower or equal 1.5.1.0 for NX3010, NX3020 and NX3030, the retentive and persistent symbolic memories and address-
able output variables memory (%Q) used to have a fixed maximum size. On table below it’s possible to consult the maximum
sizes allowed in these older versions.

In versions above the ones mentioned, the CPUs allow flexible retentive and persistent memory sizes. For further informa-
tion, refer to the section Retain and Persistent Memory Areas.

NX3030
Retentive addressable output variables mem- 16 Kbytes
ory (%Q)
Persistent addressable output variables mem- 48 Kbytes
ory (%Q)
Retentive symbolic variables memory 32 Kbytes
Persistent symbolic variables memory 16 Kbytes

Table 9: Retentive and Persistent memories in older versions

In the case of Clean All command, if the application has been modified so that persistent variables have been removed,
inserted into the top of the list or otherwise have had its modified type, the value of these variables is lost (when prompted by
the tool MasterTool to download). Thus it is recommended that changes to the persistent variables GVL only include adding
new variables on the list.

Total redundant data memory: Redundant data memory is the maximum memory area that can be used as redundant
memory between two redundant CPUs. This value is not a different memory, note that the sum of all redundant variables
(addressable input variable, addressable output variable, addressable variable, symbolic variable, retain symbolic variable,
persistent symbolic variable) must be less than or equal to the available redundant data memory.

Program memory: Program memory is the maximum size that can be used to store the user application. This area is
shared with source code memory, being the total area the sum of “program memory” and “source code memory”.

Source code memory (backup): This memory area is used as project backup. If the user wants to import the project,
MasterTool IEC XE will get the information required in this area. Care must be taken to ensure that the project saved as a
backup is up to date to avoid the loss of critical information. This area is shared with source code memory, being the total area
the sum of “program memory” and “source code memory”.

User files memory: This memory area offers another way for the user to store files such as doc, pdf, images, and other
files. This function allows data recording as in a memory card. For further information check User Files Memory.

11 altus

2. TECHNICAL DESCRIPTION

2.2.4. Protocols

NX3030 Interface

Open Protocol Yes COM1/COM2
MODBUS RTU Master Yes COM1 /COM2
MODBUS RTU Slave Yes COM1/COM2
MODBUS TCP Client Yes NET1/NET2
MODBUS TCP Server Yes NET1/NET2
MODBUS RTU over TCP Client Yes NET1 /NET2
MODBUS RTU over TCP Server Yes NET1/NET2
CANopen Master No -
CANopen Slave No -

CAN low level No -

SAE J-1939 No -

OPC DA Server Yes NET1/NET2
OPC UA Server Yes NET1 /NET2
EtherCAT Master Yes NET1/NET2
SNMP Agent Yes NET1/NET2
SOE (Event-oriented data) Yes NET1 /NET2
IEC 60870-5-104 Server Yes NETI1 / NET2
EtherNet/IP Scanner Yes NETI1 /NET2
EtherNet/IP Adapter Yes NET1 /NET2
MQTT Client Yes NET1/NET2
SNTP Client (for clock synchronism) Yes NET1/NET2
PROFINET Controller Yes NET1 /NET2
PROFINET Device No -

Table 10: Protocols
Note:

PROFINET Controller: Enabled for use without CPU redundancy and in a simple network (without a ring) with up to 8
devices. For larger applications, consult technical support.

2.2.5. Serial Interfaces

2251. COM1

COM 1
Connector Shielded female DB9
Physical interface RS-232C
Modem signals RTS, CTS, DCD

Baud rate

200, 300, 600, 1200, 1800, 2400, 4800, 9600, 19200, 38400,

57600, 115200 bps

Isolation

earth @

Logic to Serial Port
Serial Port to protection

Not isolated

1000 Vac / 1 minute

COM 1 Serial Interface Features

12

altus

2. TECHNICAL DESCRIPTION

2.25.2. COM2

Notes:

COM 2

Connector

Shielded female DB9

Physical interface

RS-422 or RS-485 (depending on the selected cable)

Communication direction

RS-422: full duplex
RS-485: half duplex

RS-422 max. transceivers

11 (1 transmitter and 10 receivers)

RS-485 max. transceivers 32
Termination Yes (optional via cable selection)
Baud rate 200, 300, 600, 1200, 1800, 2400, 4800, 9600, 19200, 38400,
57600, 115200 bps
Isolation
Logic to Serial Port 1000 Vac / 1 minute
eartShel:CSl Port to protection 1000 Vac / 1 minute

Table 12: COM 2 Serial Interface Features

Physical interface: Depending on the configuration of the used cable, it’s possible to choose the kind of physical interface:
RS-422 or RS-485. The list of cables can be found at Related Products section.

RS-422 maximum transceivers: It’s the maximum number of RS-422 interfaces that can be used on the same bus.

RS-485 maximum transceivers: It’s the maximum number of RS-485 interfaces that can be used on the same bus.

2.2.6. Ethernet Interfaces

2.2.6.1. NET1
NET 1
Connector Shielded female RJ45
Auto crossover Yes
Maximum cable length 100 m
Cable type UTP or ScTP, category 5
Baud rate 10/100 Mbps
Physical layer 10/100 BASE-TX (Full Duplex)
Data link layer LLC (Logical Link Control)

Network layer

IP (Internet Protocol))

Transport layer TCP (Transmission Control Protocol)

UDP (User Datagram Protocol)
Diagnostic LEDs - green (speed), yellow (link/activity)
Isolation

Ethernet interface to logic and earth

1500 Vac / 1 minute

Table 13: Ethernet NET 1 Interface Features

The NET 1 Interface is the interface used for programming using the MasterTool IEC XE tool.

13

altus

2. TECHNICAL DESCRIPTION

2.2.6.2. NET2
NET 2
Connector Shielded female RJ45
Auto crossover Yes
Maximum cable length 100 m
Cable type UTP or ScTP, category 5
Baud rate 10/100 Mbps
Physical layer 10/100 BASE-TX (Full Duplex)
Data link layer LLC (Logical Link Control)
Network layer IP (Internet Protocol)
Transport layer TCP (Transmission Control Protocol)
UDP (User Datagram Protocol)
Diagnostic LEDs - green (speed), yellow (link/activity)
Isolation
Ethernet interface to logic and earth | 1500 Vac/ 1 minute
fac;Ethernet interface to Ethernet inter- 1500 Vac / 1 minute

Table 14: Ethernet NET 2 Interface Features

2.2.77. Memory Card Interface

The memory card can be used for different data to be stored such as user logs, project documentation and source files.

Memory Card
Maximum Capacity 32 Gbytes
Minimum Capacity 2 Gbytes
Type MiniSD
File System FAT32
Remove card safely Yes, by pressing MS switch

Table 15: Memory Card Interface Features

Notes:

Maximum Capacity: The memory card capacity must be less than or equal to this limit for correct operation on Nexto
CPU, otherwise the Nexto CPU may not detect the memory card or even present problems during data transfer.

Minimum Capacity: The memory card capacity must be greater than or equal to this limit for correct operation on Nexto
CPU, otherwise the Nexto CPU may not detect the memory card or even present problems during data transfer.

File System: It is recommended to format the memory card using the Nexto CPU, otherwise it may result in performance
loss in the memory card interface.

14 altus

2. TECHNICAL DESCRIPTION

2.2.8. Environmental Characteristics

NX3030
Current consumption on the power supply rail 1000 mA
Dissipation S5W
Operating temperature 0to 60 °C
Storage temperature -25t0 75 °C
Relative humidity 5% to 96%, non-condensing
Conformal coating Yes
IP Level 1P 20
Module dimensions (W x H x D) 36,00 x 114,63 x 115,30 mm
Package dimensions (W x H x D) 44,00 x 122,00 x 147,00 mm
Weight 350 g
Weight with package 400 g

Table 16: Environmental Characteristics

Notes:

Conformal coating of electronic circuits: The covering of electronic circuits protects internal parts of the product against
moisture, dust and other harsh elements to electronic circuits.

2.3. Compatibility with Other Products

To develop an application for Nexto Series CPUs, it is necessary to check the version of MasterTool IEC XE. The following
table shows the minimum version required (where the controllers were introduced) and the respective firmware version at that
time:

Nexto Series CPUs MasterTool IEC XE | Firmware version
NX3010, NX3020, NX3030 1.00 to 2.09 1.2.09t01.7.0.14
NX3010, NX3020, NX3030 3.00 or above 1.8.3.0 or above

Table 17: Compatibility with other products

Additionally, along the development roadmap of MasterTool IEC XE some features may be included (like special Function
Blocks, etc...), which can introduce a requirement of minimum firmware version. During the download of the application,
MasterTool IEC XE checks the firmware version installed on the controller and, if it does not meets the minimum requirement,
will show a message requesting to update. The latest firmware version can be downloaded from Altus website, and it is fully
compatible with previous applications.

2.4. Performance

The Nexto Series CPUs performance relies on:

User Application Time

Application Interval

Operational System Time

Module quantity (process data, input/output, among others)

2.4.1. MainTask Interval Time

The MainTask interval time setting depends on the selected project profile. For the profiles Simple, Normal, Experienced,
and Custom profiles, the interval can be set with values from 1 ms to 750 ms. For the Machine Machine Profile, the interval
can be configured with values from 1 ms to 100 ms.

15 altus

2. TECHNICAL DESCRIPTION

2.4.2. Application Times

The execution time of Nexto CPUs application depends on the following variables:

= Input read time (local and remote)
= Tasks execution time

= Qutput write time (local and remote)

It is important to stress that the execution time of the “MainTask™ will be directly influenced by the “Configuration” system
task, a task of high priority, executed periodically by the system. The “Configuration” task may interrupt the “MainTask” and,
when using the communication modules, as the Ethernet NX5000 module, for instance, the time addition to the “MainTask”
may be up to 25% of the execution average time.

2.4.3. Time for Instructions Execution

The table below presents the necessary execution time for different instructions.

Instruction Language Variables Instruction Times (us)
1000 Contacts LD BOOL 6
ST REAL a
1000 Divisions T e
LD
REAL 81
ST REAL :
1000 Multiplications
INT 15
LD
REAL 23
ST REAL :
1000 Sums T G
LD
REAL 23
1000 PID ST REAL <5000

2.4.4. Initialization Times

Table 18: Instruction Times

Nexto Series CPUs have initialization times of 50 s, and the initial screen with the NEXTO logo (Splash) is presented after

20 s from the power switched on.

16

2. TECHNICAL DESCRIPTION

2.5. Physical Dimensions

Dimensions in mm.

e, -

TVHEYE LR

A N A 44840

LURLRRL QR -

Figure 4: CPU Physical Dimensions

114.63

09091455C

17

Q
=
G

\

2. TECHNICAL DESCRIPTION

2.6. Purchase Data
2.6.1. Included Itens
The product package contains the following items:

= NX3030 module

2.6.2. Product code

The following code should be used to purchase the product:

Code Description

High-speed CPU, 2 Ethernet ports, 2 serial channels, memory card in-

EUED terface, remote rack expansion and redundancy support

Table 19: Product Code

2.7. Related Products

The following products must be purchased separately when necessary:

Code Description

MT8500 | MasterTool IEC XE

AL-2600 | RS-485 network branch and terminator

AL-2306 | RS-485 cable for MODBUS or CAN network

AL-2319 | RJ45-RJ45 Cable

AL-1729 | RJ45-CMDB9 Cable

AL-1748 | CMDB9-CFDB9 Cable

AL-1752 | CMDB9-CMDB9 Cable

AL-1753 | CMDB9-CMDB25 Cable

AL-1754 | CMDB9-CFDB9 Cable

AL-1761 | CMDB9-CMDB9 Cable

AL-1762 | CMDB9-CMDBY Cable

AL-1763 | CMDB9-Terminal Block Cable

AL-1766 | CFDBO9-Terminal Block Cable

NX9101 | 32 GB microSD memory card with miniSD and SD adapters

NX9202 | RJ45-RJ45 2 m Cable

NX9205 | RJ45-RJ45 5 m Cable

NX9210 | RJ45-RJ45 10 m Cable

NX9000 | 8-Slot Backplane Rack

NX9001 | 12-Slot Backplane Rack

NX9002 | 16-Slot Backplane Rack

NX9003 | 24-Slot Backplane Rack

NX8000 | 30 W 24 Vdc Power Supply Module

Table 20: Related Products

18

altus

2. TECHNICAL DESCRIPTION

Notes:

MT8500: MasterTool IEC XE is available in four different versions: LITE, BASIC, PROFESSIONAL and ADVANCED.
For more details, please check MasterTool IEC XE User Manual - MU299609.

AL-2600: This module is used for branch and termination of RS-422/485 networks. For each network node, an AL-2600
is required. The AL-2600 that is at the ends of network must be configured with termination, except when there is a device
with active internal termination, the rest must be configured without termination.

AL-2306: Two shielded twisted pairs cable without connectors, used for networks based on RS-485 or CAN.

AL-2319: Two RJ45 connectors for programming the CPUs of the Nexto Series and Ethernet point-to-point with another
device with Ethernet interface communication.

AL-1729: RS-232C standard cable with one RJ45 connector and one DB9 male connector for communication between
CPUs of the Nexto Series and other Altus products of the DUO Series, Piccolo Series and Ponto Series.

AL-1748: RS-232C standard cable with one DB9 male connector and one DB9 female connector for communication
between CPUs of the Nexto Series and Altus products of the Cimrex Series.

AL-1752: RS-232C standard cable with two DB9 male connectors for communication between CPUs of the Nexto Series
and Altus products of the H Series and iX series.

AL-1753: RS-232C standard cable with one DB9 male connector and one DB25 male connector for communication
between CPUs of the Nexto Series and Altus products of the H Series.

AL-1754: RS-232C standard cable with one DB9 male connector and one DB9 female connector for communication
between CPUs of the Nexto Series and Altus products of the Exter Series or Serial port, RS-232C standard, of a microcomputer.

AL-1761: RS-232C standard cable with two DB9 male connectors for communication between Nexto Series CPUs and
Altus products of the AL Series.

AL-1762: RS-232C standard cable with two DB9 male connectors for communication between Nexto Series CPUs.

AL-1763: Cable with one DB9 male connector and terminal block for communication between CPUs of the Nexto Series
and products with RS-485/RS-422 standard terminal block.

AL-1766: Cable with a female DB9 connector and terminals for communication between HMI P2 and Nexto Xpress/NX3003
controllers.

NX9202/NX9205/NX9210: Cables used for Ethernet communication and to interconnect the bus expansion modules.

3. INSTALLATION

3. Installation

This chapter presents the necessary proceedings for the Nexto Series CPUs physical installation, as well as the care that
should be taken with other installation within the panel where the CPU is been installed.

If the equipment is used in a manner not specified by in this manual, the protection provided
by the equipment may be impaired.

3.1. Mechanical Installation

Nexto Series CPUs must be inserted in the backplane rack position 2, just beside the Power Supply Module. All information
regarding mechanical installation and module insertion can be found at MU214600 - Nexto Series User Manual .

3.2. Electrical Installation

When executing any installation in an electric panel, certify that the main energy supply is
OFFE.

The CPUs energy supply come from the Power Supply Module which supplies the CPUs power through the backplane
rack connection. It does not need any external connection. The module grounding is given through the contact between the
module grounding spring and the backplane rack.

The figure below shows the Nexto Series CPUs electric diagram installed in a Nexto Series backplane rack.
The connectors placement depicted are merely illustrative.

NX3010
NX3020
NX3030

MEMORY SLOT

Zz
m
—-| =3

A B

A c
10/100Base-TX - K
L P

0 Bus | L

A ¢ A
N

10/100Base-TX c A N
R

A A
RS-232C c

K

A

RS-485/RS-422

10092251D

DBS9

Figure 5: NX3010, NX3020 and NX3030 CPUs Electric Diagram

20

]
=
G

\

3. INSTALLATION

Diagram Notes:
A Memory card interface.

A Ethernet interface 10/100Base-TX standard for programming, debugging and MODBUS TCP network connec-
tion or other protocols.

Ethernet interface 10/100Base-TX standard for MODBUS TCP network connection or other protocols (only for
NX3020 and NX3030).

Serial interface RS-232C standard for MODBUS RTU network connection or other protocols.

Serial interface RS-485/RS-422 standard for MODBUS RTU network connection or other protocols. The physi-
cal interface choice depends on the cable used.

The module is grounded through Nexto Series backplane rack.

The power supply comes from the backplane rack connection. There is no need for external connections.

Protection earth terminal.

® > kB P

3.3. Ethernet Network Connection

The NET 1 and NET 2 isolated communication interface allows the connection with an Ethernet network, however, the
NET 1 interface is the most suitable to be used for communication with MasterTool IEC XE.

The Ethernet network connection uses twisted pair cables (10/100Base-TX) and the speed detection is automatically made
by the Nexto CPU. This cable must have one of its endings connected to the interface that is likely to be used and another one
to the HUB, switch, microcomputer or other Ethernet network point.

3.3.1. IP Address

The NET 1 Ethernet interface is used for Ethernet communication and for CPU configuration which comes with the
following default parameters configuration:

NET 1
IP Address 192.168.15.1
Subnetwork Mask 255.255.255.0
Gateway Address 192.168.15.253

Table 21: Default Parameters Configuration for Ethernet NET 1 Interface

The IP Address and Subnet Mask parameters can be seen on the CPU graphic display via parameters menu, as described
in CPU’s Informative and Configuration Menu section.

Initially, the NET 1 interface must be connected to a PC network with the same subnet mask to communicate with Master-
Tool IEC XE, where the network parameters can be modified. For further information regarding configuration and parameters
modifications, see Ethernet Interfaces Configuration section.

The NET 2 Ethernet interface is used only for Ethernet communication and comes with the following default parameters
configuration:

3. INSTALLATION

NET 2
IP Address 192.168.16.1
Subnetwork Mask 255.255.255.0
Gateway Address 192.168.16.253

Table 22: Default Parameters Configuration for Ethernet NET 2 Interface

The IP Address and Subnet Mask parameters can be seen on the CPU graphic display via parameters menu, as described
in CPU’s Informative and Configuration Menu section.

The NET 2 interface network parameters can be changed through MasterTool IEC XE. For further information regarding
configuration and parameters modifications, see Ethernet Interfaces Configuration section.

3.3.2. Gratuitous ARP

The NETx Ethernet interface promptly sends ARP packets type in broadcast informing its IP and MAC address for all
devices connected to the network. These packets are sent during a new application download by the MasterTool IEC XE
software and in the CPU startup when the application goes into Run mode.

Five ARP commands are triggered within a 200 ms initial interval, doubling the interval every new triggered command,
totalizing 3 s. Example: first trigger occurs at time 0, the second one at 200 ms and the third one at 600 ms and so on until the
fifth trigger at time 3 s.

3.3.3. Network Cable Installation

Nexto Series CPUs Ethernet ports, identified on the panel by NET, have standard pinout which are the same used in PCs.
The connector type, cable type, physical level, among other details regarding the CPU and the Ethernet network device are
defined in the Ethernet Interfaces.

The table below present the RJ-45 Nexto CPU female connector, with the identification and description of the valid pinout
for I0BASE-TE and 100BASE-TX physical levels.

PIN 8 PIN 1

Figure 6: RJ45 Female Connector

22

3. INSTALLATION

Pin | Signal Description

1 TXD + | Data transmission, positive
2 TXD - | Data transmission, negative
3 RXD + Data reception, positive
4 NU Not used

5 NU Not used

6 RXD - Data reception, negative
7 NU Not used

8 NU Not used

Table 23: RJ45 Female Connector Pinout - 10BASE-TE and 100BASE-TX

The interface can be connected in a communication network through a hub or switch, or straight from the communication
equipment. In this last case, due to Nexto CPUs Auto Crossover feature, there is no need for a cross-over network cable, the
one used to connect two PCs point to point via Ethernet port.

It is important to stress that it is understood by network cable a pair of RJ45 male connectors connected by a UTP or ScTP
cable, category 5 whether straight connecting or cross-over. It is used to communicate two devices through the Ethernet port.

These cables normally have a connection lock which guarantees a perfect connection between the interface female con-
nector and the cable male connector. At the installation moment, the male connector must be inserted in the module female
connector until a click is heard, assuring the lock action. To disconnect the cable from the module, the lock lever must be used

to unlock one from the other.

3.4. Serial Network Connection RS-232

The COM 1 non isolated communication interface allows the connection to a RS-232C network. As follows it’s presented
the DB9 female connector to Nexto CPU, with identification and sign description.

5

fi gt_: ;040 b-cf

r' 070 ¢0,0 O

@

Figure 7: DB9 Female Connector

23

3. INSTALLATION

Pin | Sign | Description
1 DCD | Data Carrier Detect
2 TXD | Data Transmission
3 RXD | Data Reception
4 - Not used
5 GND | Ground
6 - Not used
7 CTS | Clear to Send
8 RTS | Request to Send
9 - Not used

Table 24: COM 1 DB9 Female Connector Pin Layout

3.4.1. RS-232C Communication

For connection to a RS-232C device, use the appropriate cable as the section Related Products.

3.5. Serial Network Connection RS-485/422

The COM 2 isolated communication interface allow the connection to a RS-485/422 network. As follows it’s presented
the DB9 female connector to Nexto CPU, with identification and sign description.

BON

,;;:--- =)

.. gu ;040 b.f_,
M0 70§00 O

ok

Figure 8: DB9 Female Connector

Pin

Sign | Description

- Not used

Term+ | Internal Termination, positive

TXD+ | Data Transmission, positive

RXD+ | Data Reception, positive

GND | Negative Reference for External Termination

+5V Positive Reference for External Termination

Term- | Internal Termination, negative

TXD- | Data Transmission, negative

R QAN | N || W] =

RXD- | Data Reception, negative

Table 25: COM 1 and COM 2 DB9 Female Connector Pin Layout

24

altus

3. INSTALLATION

3.5.1. RS-485 Communication without termination

In order to connect in a RS-485 network with no termination, the cable AL-1763 identified terminals must be connected in
the respective device terminals, as shown on table below.

AL-1763 terminals | Device terminal signals
0 Shield

Not connected

D+

D+

Not connected

Not connected

Not connected
D-
D-

RNA[N| N[B|W| N -

Table 26: RS-485 Connections without Termination

The figure diagram below indicates how the AL-1763 connection terminals should be connected in the device terminals.

DEVICE
RS-485

—1®

2 —

CPU AL-1763 3 D+

5 —KA

6 p—

7

s] D- &

Figure 9: RS-485 Connections without Termination Diagram

Diagram Note:

1. The not connected terminals must be insulated so they do not make contact with each other.

25 altus

3. INSTALLATION

3.5.2. RS-485 Communication with Internal Termination

In order to connect in a RS-485 network using the internal termination, the cable AL-1763 identified terminals must be
connected in the respective device terminals, as shown on table below.

AL-1763 terminals | CPU terminal signals
0 Shield

D+

D+

D+

Not connected

Not connected
D-
D-
D-

RNA[N| N[B|W| N -

Table 27: RS-485 Connections with Internal Termination

PS.: The internal termination available is a safe state type in open mode.
The figure diagram below indicates how the AL-1763 connection terminals should be connected in the device terminals.

DEVICE
RS-485

@

D+

C P U AL-1763 — A

0~NO QRN =0

11031404

Figure 10: RS-485 Connections with Internal Termination Diagram

Diagram Note:

1. The not connected terminals must be insulated so they do not make contact with each other.

26 altus

3. INSTALLATION

3.5.3. RS-485 Communication with External Termination

In order to connect to a RS-485 network wih external termination, the AL-1763 cable identified terminals must be con-
nected in the respective device terminals according to the table below.

AL-1763 terminals | CPU terminal signals
0 Shield

Not connected

D+

D+

ov

+5V

Not connected

D-

D-

RNA[N| N[B|W| N -

Table 28: RS-485 Connections with External Termination

The figure diagram below indicates how the AL-1763 connection terminals should be connected in the device terminals.

DEVICE
RS-485

7o\ S#»?
|
oV
5V

=

CPU AL-1763

o~NoOORhwN—=2O

11082252

Figure 11: RS-485 Connections with External Termination Diagram

Diagram Note:

1. The not connected terminals must be insulated so they do not make contact with each other.

27 altus

3. INSTALLATION

3.5.4. Example of Connection of a RS-485 Network with External Termination and Master Redundancy

The figure below shows an example of RS-485 network connection with external termination, using two Nexto NX3030
CPUs with half-cluster redundancy as master.

PLC B
COM
PLCA 7|2
0|4|5|8]3
COM AL-1763
712
ol4]5]s8]3
ol .|l al .|
AR 5[0[°|5|a

AL-2600 o

Termination —— —onN

BR+

SHD

+| 1| o
14
olo|g

RS-485

15031701B

Figure 12: Connection Diagram of a RS-485 Network with External Termination and Master Redundancy

3.5.5. RS-422 Communication without Termination

In order to connect in a RS-422 network with no termination, the cable AL-1763 identified terminals must be connected in
the respective device terminals, as shown on table below.

AL-1763 terminals

CPU terminal signals

0

Shield

Not connected

TX+

RX+

Not connected

Not connected

Not connected

TX-

R[N | N | B | W[=—-

RX-

Table 29:

RS-422 Connections without Termination

The figure diagram below indicates how the AL-1763 connection terminals should be connected in the device terminals.

28

altus

——

3. INSTALLATION

DEVICE
RS-422

®

RX+
TX+

C P U AL-1763

RX-

o~ GhwN 2O

031405G

"

Figure 13: Connections without Termination Diagram

Diagram Note:

1. The not connected terminals must be insulated so they do not make contact with each other.

3.5.6. RS-422 Communication with Internal Termination

In order to connect in a RS-422 network using the internal termination, the cable AL-1763 identified terminals must be
connected in the respective device terminals, as shown on table below.

AL-1763 terminals | CPU terminal signals
0 Shield

TERM+

TX+

RX+

Not connected

Not connected
TERM-

TX-

RX-

RN NN B[R] -

Table 30: RS-422 Connections with Internal Termination

PS.: The internal terminations available are secure state in open mode.
The figure diagram below indicates how the AL-1763 connection terminals should be connected in the device terminals.

DEVICE
RS-422

®

RX+
TX+

C P U AL-1763

O~ R WN=2O

RX-

11031406H

Figure 14: RS-422 Connections with Termination Diagram

29 altus

3. INSTALLATION

Diagram Note:

1. The not connected terminals must be insulated so they do not make contact with each other.

3.5.7. RS-422 Communication with External Termination

In order to connect in a RS-422 network using interface external termination, the cable AL-1763 identified terminals must
be connected in the respective device terminals, as shown on table below.

AL-1763 Terminals | CPU terminal signals
0 Shield

Not connected

TX+

RX+

ov

+5V

Not connected

TX-

RX-

RN NN B[R] =

Table 31: RS-422 Connections with External Termination

The figure diagram below indicates how the AL-1763 connection terminals should be connected in the device terminals.

DEVICE
RS-422

—A|®

RX+
X+
ov
+5V

C P U AL-1763

RX-
TX-

CO~NDORWN-=2O

11082251F

Figure 15: RS-422 Connections with External Termination Diagram

Diagram Note:

1. The not connected terminals must be insulated so they do not make contact with each other.

3.5.8. RS-422 Network Example

The figure below shows an example of RS-422 network utilization, using the Nexto CPU as master, slave devices with
RS-422 Interface, and Altus solutions for terminators and connections.

30 altus

3. INSTALLATION

Master Slave Slave
Device
CPU RS-422 CPU

AL-1763

A NNAR
<[elelals
2E(3(3(7|%[%

& Bk 5 [E[E[F
AL-1763 —l|||| —1||||
7| 2] 0] 4| 5| 8| 3| | | 0f 8| 3| 7|2
853" [2[8 M 2[%(2]°[2/8 2[%/3[|%[2
AL-2600 o AL-2600 o AL-2600 AL-2600 AL-2600 o AL-2600 —or
Termination——»—on Termination—»—on Derivator Derivator Termination —»—on Termination—»—on
olalolElEl (2[s]e[E|s 2lalolklEl [B]ale|glE Slalolafz| [Bl|o|&ls dlElslal2] [also|E| HE S B . clElolsla] [alale]&[s
[| l I [| I
AL-2306
o
g
AL-2306 §
AL-2306 AL-2306

Figure 16: RS-422 Network Example

Diagram Note:

The AL-2600 modules which are in the network endings perform the terminators function. In this case the AL-2600 keys
must be configured in PROFIBUS Termination.

3.6. Memory Card Installation

This section presents how to insert the memory card into the models Nexto Series CPUs. For further information see
Memory Card section.

Initially, care must be taken with the correct position the memory card must be inserted. One corner of it is different from
the other three and this one must be used as reference for the card correct insertion. Therefore, the memory card must be
inserted following the depiction on the CPU frontal part or the way showed on figure below.

10081212B

Figure 17: Memory Card Insertion in the CPU

When the card is correctly installed, a symbol will appear on the CPU graphic display. For card secure removing the MS
key must be pressed then there is a little delay and the card symbol will disappear from the graphic display. The card is now

31 altus

——

3. INSTALLATION

ready to be taken off. For that, the card must be pressed against the CPU until a click is heard, then release it and withdraw it
from the compartment as showed on figure below. At this moment the card will be loose.

100812138

Figure 18: Memory Card Withdrawal

3.7. Architecture Installation
3.7.1. Module Installation on the Main Backplane Rack
Nexto Series has an exclusive method for connecting and disconnecting modules on the bus which does not require much

effort from the operator and guarantee the connection integrity. For further information regarding Nexto Series products
fixation, please see Nexto Series User Manual — MU214600.

3.8. Programmer Installation

To execute the MasterTool IEC XE development software installation, it is necessary to have the distribution CD-ROM
or download the installation file from the site https://www.altus.com.br/en/. For further information about the step by step to
installation, consult MasterTool IEC XE User Manual MT8500 — MU299609.

https://www.altus.com.br/en/

4. INITIAL PROGRAMMING

4. Initial Programming

The main goal of this chapter is to help the programming and configuration of Nexto Series CPUs, allowing the user to
take the first steps before starting to program the device.

Nexto Series CPU uses the standard IEC 61131-3 for language programming, which are: IL, ST, LD, SFC and FBD, and
besides these, an extra language, CFC. These languages can be separated in text and graphic. IL and ST are text languages
and are similar to Assembly and C, respectively. LD, SFC, FBD and CFC are graphic languages. LD uses the relay block
representation and it is similar to relay diagrams. SFC uses the sequence diagram representation, allowing an easy way to see
the event sequence. FBD and CFC use a group of function blocks, allowing a clear vision of the functions executed by each
action.

The programming is made through the MasterTool IEC XE (IDE) development interface. The MasterTool IEC XE allows
the use of the six languages in the same project, so the user can apply the best features offered by each language, resulting in
more efficient applications development, for easy documentation and future maintenance.

For further information regarding programming, see MasterTool IEC XE User Manual - MU299609, MasterTool IEC XE
Programming Manual - MP399609 or IEC 61131-3 standard.

4.1.

Nexto Series uses an innovative memory organization and access feature called big-endian, where the most significant byte
is stored first and will always be the smallest address (e.g. %QBO0 will always be more significant than %QB1, as in table
below, where, for CPUNEXTO string, the letter C is byte 0 and the letter O is the byte 7).

Besides this, the memory access must be done carefully as the variables with higher number of bits (WORD, DWORD,
LONG), use as index the most significant byte, in other words, the %QD4 will always have as most significant byte the %QB4.
Therefore it will not be necessary to make calculus to discover which DWORD correspond to defined bytes. The table below,
shows little and big endian organization.

Memory Organization and Access

MSB < Little-endian — LSB
BYTE %QB7 | %QB6 | %QB5 | %QB4 | %QB3 | %QB2 | %QB1 | %QB0
C P U N E X T o
WORD %QW6 %QW4 0QW?2 %0QWO0
CpP UN EX TO
DWORD %QD4 %QD0
CPUN EXTO
LWORD %QLO
CPUNEXTO
MSB <+ Big-endian — LSB
BYTE %QB0 | %QB1 | %QB2 | %QB3 | %QB4 | %QB5 | %QB6 | %QB7
C P U N E X T o
WORD %QW0 %0QW?2 %0QW4 %0QW6
CP UN EX TO
DWORD %QD0 %QD4
CPUN EXTO
LWORD %QLO
CPUNEXTO

Table 32: Memory Organization and Access Example

33

altus

4. INITIAL PROGRAMMING

MSB

LSB

MSB

SIGNIFICANCE

OVERLAPPING

Bit

Byte

Word

DWord

LWord

%QX0.7
%QX0.6
%QX0.5
%QX0.4
%QX0.3
%QX0.2
%QX0.1

%QB
00

%QX0.0

TQW

%QX1.7

00

%QX1.6
%QX1.5
%QX1.4
%QX1.3
%QX1.2
%QX1.1

%QB
01

%QX1.0

%QD

%QX2.7
%QX2.6
%QX2.5
%QX2.4
%QX2.3
%QX2.2
%QX2.1

%QB
02

=)
S

%QX2.0

TQW

%QX3.7
%QX3.6
%QX3.5
%QX34
%QX3.3
%QX3.2
%QX3.1

%QB
03

02

%QX3.0

%QX4.7
%QX4.6
%QX4.5
%QX44
%QX43
%QX42
%QX4.1
%QX4.0

%QB

DQW

%QX5.7
%QX5.6
%QX5.5
%QX5.4
%QX5.3
%QX5.2
%QX5.1
%QX5.0

%QB
05

%QD

%QX6.7
%QX6.6
%QX6.5
%QX6.4
%QX6.3
%QX6.2
%QX6.1
%QX6.0

%QB
06

DQW

%QX7.7
%QX7.6
%QX1.5
%QXT.4
%QX7.3
%QX7.2
%QX7.1
%QXT.0

%QB

06

2

Byte

‘Word

DWord

%QB00

%QW

%QBO1

%QW

%QB02

01

%QD
00

%QB03

%QW
02

FQW

%QB04

%QB05

%QB06

DQW

03

%QW

Table 33: Memory Organization and Access

34

Q
=
G

\

4. INITIAL PROGRAMMING

The table above shows the organization and memory access, illustrating the significance of bytes and the disposition of other
variable types, including overlapping.

4.2. Project Profiles

A project profile in the MasterTool IEC XE consists in an application template together with a group of verification rules
which guides the development of the application, reducing the programming complexity. The applications can be created
according the following profiles:

= Single

= Basic

= Normal

= Expert

= Custom

= Machine Profile

The Project Profile is selected on the project creation wizard. Each project profile defines a template of standard names for
the tasks and programs, which are pre-created according to the selected Project Profile. Also, during the project compilation
(generate code), MasterTool IEC XE verify all the rules defined by the selected profile.

The following sections details the characteristics of each profile, which follow a gradual complexity slope. Based in these
definitions, it’s recommended that the user always use the simplest profile that meets his application needs, migrating to a more
sophisticated profile only when the corresponding rules are being more barriers to development than didactic simplifications.
It is important to note that the programming tool allows the profile change from an existent project (see project update section
in the MasterTool IEC XE User Manual — MU299609), but it’s up to the developer to make any necessary adjustments so that
the project becomes compatible with the rules of the new selected profile.

ATTENTION

Through the description of the Project profiles some tasks types are mentioned, which are
described in the section ‘Task Configuration’, of the MasterTool IEC XE User Manual —
MU299609.

ATTENTION

|

When more than one task is used, the I/O access can only be done in the context of the
MainTask. In case that the option Enable I/O Update per Task can’t be used, present as of
MasterTool IEC XE version 2.01.

4.2.1. Single

In the Single Project Profile, the application has only one user task, MainTask. This task is responsible for the execution
of a single Program type programming unit called MainPrg. This single program can call other programming unit, of the
Program, Function or Function Block types, but the whole code will be executed exclusively by the MainTask.

In this profile, the MainTask will be of the cyclical type (Cyclic) with priority fixed as 13 (thirteen) and runs exclusively the
MainPrg program in a continuous loop. The MainTask is already fully defined and the developer needs to create the MainPrg
program, using any of the languages of the IEC 61131-3 standard. It is not always possible to convert a program to another
language, but it’s always possible to create a new program, built in a different language, with the same name and replace it.
The MasterTool IEC XE standard option is to use the MasterTool Standard Project associated with the Single profile, which
also include the MainPrg created in the language selected during the project creation.

This type of application never needs to consider issues as data consistence, resource sharing or mutual exclusion mecha-
nisms.

Task POU Priority | Type | Interval | Event
MainTask | MainPrg 13 Cyclic [20 ms -

Table 34: Single Profile Task

\

4. INITIAL PROGRAMMING

4.2.2. Basic

In the Basic Project Profile, the application has one user task of the Continuous type called MainTask, which executes the
program in a continuous loop (with no definition of cycle time) with priority fixed in 13 (thirteen). This task is responsible
for the execution of a single programming unit POU called MainPrg. It’s important to notice that the cycle time may vary
according to the quantity of communication tasks used, as in this mode, the main task is interrupted by communication tasks.

This profile also allows the inclusion of two event tasks with higher priority, that can interrupt (preempt) the MainTask at
any given moment: the task named ExternInterruptTask0O0 is an event task of the External type with priority fixed in 02 (two);
the task named TimelInterruptTaskOO is an event task of the Cyclic type with priority fixed as 01 (one).

The Basic project template model includes three tasks already completely defined as presented in table below. The devel-
oper need only to create the associated programs.

Tasks POU Priority Type Interval Event
MainTask MainPrg 13 Continuous - -
ExternInterruptTask00 | ExternlnterruptPrg00 02 External - I0O_EVT 0
TimelnterruptTask00 TimelnterruptPrg00 01 Cyclic 20 ms -

Table 35: Basic Profile Tasks

4.2.3. Normal

In the Normal Project Profile, the application has one user task of the Cyclic type, called MainTask. This task is responsible
for the execution of a single programming unit POU called MainPrg. This program and this task are similar to the only task
and only program of the Single profile, but here the application can integrate additional user tasks. These other tasks, named
CyclicTask00 and CyclicTask01, each one responsible for the exclusive execution of its respective CyclicPrg<nn> program.
The CyclicTask<nn> tasks are always of the cyclic type and with priority fixed in 13 (thirteen), same priority as MainTask.
These two types form a group called basic tasks, which associated programs can call other POUs of the Program, Function and
Function Block types.

Furthermore, this profile can include event tasks with higher priority than the basic tasks, which can interrupt (preempt)
these tasks execution at any time.

The task called ExternInterruptTask(0 is an event task of the External type which execution is triggered by some external
event, such as the variation of a control signal on a serial port or the variation of a digital input on the NEXTO bus. This
task priority is fixed in 02 (two), being responsible exclusively for the execution of the ExternInterruptPrg00 program. The
task called TimelnterruptTask0O0 is an event task of the Cyclic type with a priority fixed as 01 (one), being responsible for the
execution exclusively of TimelnterruptPrg00 program.

In the Normal project model, there are five tasks, and its POUs, already fully defines as shown in table below. The developer
needs only to implement the programs content, opting, on the wizard, for any of the languages in IEC 61131-3 standard. The
tasks interval and trigger events can be configured by the developer and the unnecessary tasks can be eliminated.

Tasks POU Priority Type Interval Event
MainTask MainPrg 13 Cyclic 20 ms -
CyclicTask00 CyclicPrg00 13 Cyclic 200 ms -
CyclicTask01 CyclicPrg01 13 Cyclic 500 ms -
ExternInterruptTask00 | ExternInterruptPrg00 02 External - I0_EVT_0
TimelnterruptTask00 TimelnterruptPrg00 01 Cyclic 20 ms -

Table 36: Normal Profile Tasks

4.2.4. Expert

The Expert Project Profile includes the same basic tasks, CyclicTask<nn>, ExternInterruptTask00 and TimelInterruptTask00
with the same priorities (13, 02 and 01 respectively), but it’s an expansion from the previous ones, due to accept multiple events
tasks. That is, the application can include various ExternInterruptTask<nn> or TimelnterruptTask<nn> tasks that execute the
ExternInterruptPrg<nn> and TimelnterruptPrg<nn> programs. The additional event tasks priorities can be freely selected from
08 to 12. In this profile, besides the standard programs, each task can execute additional programs.

4. INITIAL PROGRAMMING

In this project profile, the application may also include the user task FreeTask of the Freewheeling type with priority 31,
responsible for the FreePrg program execution. As this task is low priority it can be interrupted by all others so it can execute
codes that might be blocked.

There are eight tasks already fully defined, as shown in table below, as well as their associated programs in the chosen
language. Intervals and trigger events of any task, as well as the priorities of the event tasks can be configured by the user.

When developing the application using Expert project’s profile, a special care is needed with the event tasks scaling. If
there is information and resource sharing between these tasks or between them and the basic tasks, it is strongly recommended
to adopt strategies to ensure data consistency.

Tasks POU Priority Type Interval Event

MainTask MainPrg 13 Cyclic 20 ms -
CyclicTask00 CyclicPrg00 13 Cyclic 200 ms -
CyclicTask01 CyclicPrg01 13 Cyclic 500 ms -

ExternInterruptTask00 | ExternInterruptPrg00 02 External - IO_EVT_0O
TimelnterruptTask00 TimelnterruptPrg00 01 Cyclic 20 ms -

ExternInterruptTask01 | ExternInterruptPrg01 11 External - I0_EVT_1
TimelnterruptTask01 TimelnterruptPrg01 09 Cyclic 30 ms -
FreeTask FreePrg 31 Continuous - -

Table 37: Expert Profile Tasks

4.2.5. Custom

The Custom project profile allows the developer to explore all the potential of the Runtime System implemented in the
CPUs. No functionality is disabled; no priority, task and programs association or nomenclatures are imposed. The only
exception is for MainTask, which must always exist with this name in this Profile.

Beyond the real time tasks, with priority between 00 and 15, which are scheduled by priority, in this profile it is also
possible to define tasks with lower priorities in the range 16 to 31. In this range, it’s used the Completely Fair Scheduler (time
sharing), which is necessary to run codes that can be locked (for example, use of sockets).

The developer is free to partially follow or not the organization defined in other project profiles, according to the charac-
teristics of the application. On the other hand, the Custom model associated with this profile needs no pre-defining elements
such as task, program or parameter, leaving the developer to create all the elements that make up the application.

Tasks POU Priority Type Interval Event

MainTask MainPrg 13 Cyclic 20 ms -
CyclicTask00 CyclicPrg00 13 Cyclic 200 ms -
CyclicTask01 CyclicPrg01 13 Cyclic 500 ms -

ExternInterruptTask00 | ExternlnterruptPrg00 02 External - I0_ EVT 0
TimelInterruptTask00 TimelnterruptPrg00 01 Cyclic 20 ms -

ExternInterruptTask01 | ExternInterruptPrg01 11 External - IO_EVT_1
TimelInterruptTask01 TimelnterruptPrg01 09 Cyclic 30 ms -
FreeTask FreePrg 31 Continuous - -

Table 38: Custom Profile Tasks

4.2.6. Machine Profile

In the Machine Profile, by default, the application has a user task of the Cyclic type called MainTask. This task is respon-
sible for implementing a single Program type POU called MainPrg. This program can call other programming units of the
Program, Function or Function Block types, but any user code will run exclusively by MainTask.

This profile is characterized by allowing shorter intervals in the MainTask, allowing faster execution of user code. This
optimization is possible because MainTask also performs the processing of the bus. This way, different from other profiles, the
machine profile requires no context switch for the bus treatment, which reduces the overall processing time.

37 altus

4. INITIAL PROGRAMMING

This profile may further include an interruption task, called TimelInterruptTask00, with a higher priority than the MainTask,
and hence, can interrupt its execution at any time.

Tasks POU Priority | Type | Interval | Event
MainTask MainPrg 13 Cyclic 20 ms -
TimelnterruptTask00 | TimelnterruptPrg00 01 Cyclic 4 ms -

Table 39: Machine Profile Tasks

Also, this profile supports the inclusion of additional tasks associated to the external interruptions.

4.2.7. General Table
Project Profiles
Single | Machine Basic Normal Expert Custom
Total tasks 01 04 [01..03] [01..32] [01..32] [01..32]
Tasks per program 01 01 01 <n> <n>
Type Cyclic Cyclic Continuous | Cyclic Cyclic Cyclic
Main Task Priority 13 13 13 13 13 13
Quantity 01 01 01 01 01 01
Time Type Cyclic Cyclic Cyclic Cyclic Cyclic
Interrupt Priority 01 01 01 01 or [08..12] | 01 or [08..12]
Task Quantity [00..01] [00..01] [00..01] [00..31] [00..31]
Extern Type External External External External External
Interrupt Priority 02 02 02 02 or [08..12] | 02 or [08..12]
Task Quantity [00..01] [00..01] [00..01] [00..31] [00..31]
Type Cyclic Cyclic Cyclic
Ciclic Task Priority 13 13 13
Quantity [00..31] [00..31] [00..31]
Type Continuous Continuous
Free Task Priority 31 31
Quantity [00..01] [00..01]
Type Event
Event Task Priority <n>
Quantity [00..31]
Table 40: General Profile x Tasks Table
The suggested POU names associated with the tasks are not consisted. They can be changed,
as long as they are also changed in the tasks configurations.
4.2.8. Maximum Number of Tasks

The maximum number of tasks that the user can create is only defined for the Custom profile, the only one which has
this permission. The others already have their tasks created and configured. However, the tasks that will be created must use
the following prefixes, according to the type of each of the tasks: CyclicTaskxx, TimeInterruptTaskxx, ExternInterruptTaskxx,
where xx represents the number of the task that being created.

The table below describes the maximum IEC task quantity per CPU and project profile, where the protocol instances are
also considered communication tasks by the CPU.

38 altus

——

4. INITIAL PROGRAMMING

Task Type NX3030
S|B|NJ|E|P|M
Configuration Task (WHSB Task) Cyclic 1|1 1 1 1 0
User Tasks Cyclic I |1 |31]3131] 2
Triggered by Event 0]0] 0 013110
Disp. External Event O0]1]0]30]31]0
Freewheeling oj11]0 1 131]0
State-triggered 0101 0 0 [131]0
NETs - Client or Server Instances Cyclic 16
COM (n) - Master or Slave Instances Cyclic 1
TOTAL 32

Table 41: NX3030 IEC Tasks Maximum Number

Notes:

Profile Legend: The S, B, N, E, C and M letters correspond to the Single, Basic, Normal, Expert, Custom and Machine
profiles respectively.

Values: The number defined for each task type represents the maximum values allowed.
Task WHSB: The WHSB is a system task that must be considered so the total value is not surpassed.

NETs - Client or Server Instances: The maximum value defined considers all system Ethernet interfaces, including the
expansion modules when these are applied. E.g. MODBUS protocol instances.

COM (n) - Master or Slave Instances: The "n" represents the number of the serial interface. Even with expansion
modules, the table value will be the maximum per interface. E.g. MODBUS protocol instances.

Total: The total value does not represent the sum of all profile tasks, but the maximum value allowed per CPU. Therefore,
the user can create several task types, while the established numbers for each one and the total value are not surpassed.

4.3. CPU Configuration

The Nexto CPU configuration is located in the device tree, as shown on figure below, and can be accessed by a double-click
on the corresponding object. In this tab it’s possible to configure the diagnostics area, the retentive and persistent memory area
and hot swap mode, among other parameters, as described in the CPU Configuration.

I Nexto.project - MasterTool TEC

Fle Edit View Project Buld Online Debug Took Window Help

Sl #h % ol es & C©
Devices > B X 5 fi
[E] Configuration (Bus) [E] UserPra [Device [mx3010 x
=13 Nexto >
= [Device (Mx3010) General Parameters Diagnostics Area CPU Parameters
=Bl pLC Logic %0 Start Address Start User Appiication after a Watchdog Reset
=% Application Bus Event Configuration 21033 = ‘D|sah‘gd v|
[sill of Materials onch Size Hot Swap Mode
- synchronism
Configuration and Consumption 558 ‘Er\ah\ad, without startup consistency - |
[piagnostic Explorer Used range: %QB21033..%0B21595
+ (2D SystemGyLls
+-{_) SystemPOUs Retain Area TCR/IP Parameters
+ 2 UserGiLs %Q Start Address Initial Time-put (x100 ms)
-3 UserPous (096 = 2 =
i vibrary Manager Size ACK Delay (10 ms)
= {8 Task Configuration 3122 2 [w =
= ¢ MainTask Used range: %QB4096..%QB 12287
& MainPra
= [l configurgtion (B Persistent Area Project Parameters
= [o010 pixo10) %0 Start Address Cansist retain and persistent area in %GQ.
y e 12253 - Enable IO update per task.
® comz Size Enable retain and persistent variables in Function Blocks,
® NET1 8192 g —
Used range: %QB12288..%QB820479 Memory Card...

Figure 19: CPU Configuration

Besides that, by double-clicking on CPU’s NET 1 icon, it’s possible to configure the Ethernet interface that will be used
for communication between the controller and the software MasterTool IEC XE.

39 altus

gt

4. INITIAL PROGRAMMING

g Nexto.project - MasterTool IEC

File Edit WVew Project Build Onlne Debug Tools Window Help

ar = o

ER=" & O 1% #h ¢
Devices > o x Configuration (Bus) 3 NET1 X

= Mexto l:J [obtain an 1P address automatically
- m Device (NX3010) Ethernet Port Parameters
=80 PLC Logic
3 TP IP Add 192 . 168 . 15 . 1
=1} Application ress
@ Bill of Materials Subnetwork Mask | 255 . 255 .255 . 0

= Configuration and Consumption
@ Diagnostic Explarer
+- SystemGiLs
#-12) SystemPOUs
+-I0) UserGyLs
#13) UserPOUs
m Library Manager
= @ Task Configuration
= éﬁ MainTask
@ MainPrg
= m Configuration {Bus)
=@ nx3010 (Mx3010)
A coM1

Gateway Address | 192 . 168 . 15 . 253

2 NET 1

Figure 20: Configuring the CPU Communication Port

The configuration defined on this tab will be applied to the device only when sending the application to the device (down-
load), which is described further on sections Finding the Device and Login.

4.4. Libraries

There are several programming tool resources which are available through libraries. Therefore, these libraries must be
inserted in the project so its utilization becomes possible. The insertion procedure and more information about available
libraries must be found in the MasterTool Programming Manual — MP399609.

4.5. Inserting a Protocol Instance

The Nexto Series CPUs, as described in the Protocols section, offers several communication protocols. Except for the
OPC DA and OPC UA communication, which have a different configuration procedure, the insertion of a protocol can be
done by simply right-clicking on the desired communication interface, selecting to add the device and finally performing the
configuration as shown in the Protocols Configuration section. Below is presented an examples.

4.5.1. MODBUS Ethernet

The first step to configure the MODBUS Ethernet (Client in this example), is to include the instance in the desired NET
(in this case, NET 1, as the CPU NX3010 has only one Ethernet interface). Click on the NET with the mouse right button and
select Add Device..., as shown on figure below.

40

]
=
G

\

4. INITIAL PROGRAMMING

!Nex‘lo.projed’ - MasterTool IEC

File Edit Vew Project Build Onlne Debug Tools

E=zEI& dh | E

Devices - 1 X B

= Nexto E] |:
= [Device (MX3010)]
=&l PLE Logic T

=Lk Application
@ Bill of Materials
%) Configuration and Consumption 4
@ Diagnostic Explorer E
+12) SystemGVLs g
+1J) SystemPOUs
+1) UserGils g
+-{) UserPOls
m Library Manager
= @ Task Configuration 4
= @ MainTask E
@ MainPrg
= ﬂj Configuration (Bus) 7
= Nx3010 {(NX3010)
3 com1
2 com2

X |NET 1

Cut

Copy

Paste

Delete

Browse 4
Properties...

Add Object
) AddFolder...

| Add Device...

Scan For Devices...
Update Device...
Edit Object

-

Edit Object With...

Import from CSV...
Export to C5V...

Simulation

Figure 21: Adding the Instance

After that, the available protocols for the user will appear on the screen. In this menu is defined the configuration mode
of the protocol. Selecting the option MODBUS Symbol Client, for Symbolic Mapping setting or MODBUS Client, for Direct
Addressing (%Q). Then, click Add Device, as shown in the figure below.

41

Q
=
G

\

4. INITIAL PROGRAMMING

(4] Add Device

Mame:

MODBUS_Symbal_Client

Action:

4

@ Appenddevice () Insert device
String for a fulltext search vendor: | <All venders: -
Name Vendor Version Description
+- [Fieldbusses
+- [=c so870-5-104
= [mopBUS
= [l MoDBUS Ethernet
= [mopBus client
[moBus Client WAL 10.0.11 MODBUS TCP Client or MODBUS RTU vig
[T MopBUS symbol client AltusS.A. 1.0.0.33 MODBUSTCP Client or MODBUS RTU ovi
= [mopBUS server
[MopBUS server WAL 10.0.11 MODBUS TCP Server or MODBUS RTU vi
m MODBUS Symbaol Server Altus 5.4, 1.0.0.5 MODBUS TCP Server or MODBUS RTU vi

m

2

Group by category [Display all versions (for experts anly)

[Display outdated versions

i

Name: MODBUS Symbol Client
Vendor: Altus 5.A.
‘Categories: MODBUS Client
Version: 1.0.0.33

Order Number: 227

Description: MODBUS TCP Client or MODBEUS RTU over TCP Client

Append selected device as last child of
NET 1

& (You can select another target node in the navigator while this window is open.)

Add Device] [Close

4.6. Finding the Device

Figure 22: Selecting the Protocol

To establish the communication between the CPU and MasterTool IEC XE, first it’s necessary to find and select the desired
device. The configuration of this communication is located on the object Device on device tree, on Communication Settings
tab. On this tab, after selecting the Gateway and clicking on button Scan network, the software MasterTool IEC XE performs a
search for devices and shows the CPUs found on the network of the Ethernet interface of the station where the tool is running.

EsE &

Py

Configuration (Bus)
Communication Settings

Files

snod L

Log

Users and Groups

Access Rights

Information

Fle Edit View Project Buld Online Debug Todls Window

8 O | o

[{] Device x

Help

Select the network path to the controller:

Gateway-1

#he Cateway1

Device Name:
Gateway-1

Driver:
TCR/IP

IP-Address:
localhost

Port:
1217

Figure 23: Finding the CPU

Add gateway...
Add device...
Filter :
TargetID -

Sorting order :

If there is no gateway previously configured, it can be included by the button Add gateway, using the default IP address

localhost to use the gateway resident on the station or changing the IP address to use the device internal gateway.

Next, the desired controller must be selected by clicking on Set active path. This action selects the controller and informs

the configuration software which controller shall be used to communicate and send the project.

42

Q
=
G

\

4. INITIAL PROGRAMMING

Select the network path to the controller:
=g Gateway-1 A m-ggﬂame: A | AddGateway...
DONT_TOUCH_XP325_192.168.17.62 [013E <
e - i {0t el e Add Device...
@ on-s372[0764] .
[Gn-9373 [0765] g’;;g"’e“"" = Delete
[l Hx3040_192.168.18.140 [028C]
El HXG040_LAB [02868] Sg;ck.irwer_ Scan Network
[nox003_192.168.19.120 [0378] Wink
[nxc004_192.168.18.113 [0371] Encrypted
|Communication:
[f noc005_Mastertool_192.168.19.155 [0398] ITLS supported
NX3010_192.168.18.112 [0270
i . 10270] Number of
[l mx3010_192.168.19.158 [039E] channels:
[l [os030_182.168.18.158 [029E] 8
(@ noc030_192.168.18.54_PLCA [0236] oerrl e
[f Nx3030_192.166.18.55_PLCE [0237] [00E00C009501
[l nxs100_192.168.19.157 [039D] Target 1D:
[nxs100_192.168.23.52 [0734] 1025 AD30
[l nors101_192.168.19.202 [03CA) rarget Hame:
[nxs101_192.168.23.60 [073C] NEXTO PLC
[noxs110_192.168.23.21 [0715] Target Type:
[nos110_192.168.23.22 [0716] 4096
[l nxs110_192.168.23.27 [0718] e
[noxs110_192.168.23.9 [0709] Altus
[nos210_192.168.23.10 [0704])
Target Version:
[l nxs210_192.168.23.11 [0708] v | |1880 v
e

Figure 24: Selecting the CPU

Additionally, the user can change the default name of the device that is displayed. For that, you must click the right mouse
button on the desired device and select Change Device Name. After a name change, the device will not return to the default
name under any circumstances.

In case the Ethernet configuration of the CPU to be connected is in a different network from the Ethernet interface of the
station, the software MasterTool IEC XE will not be able to find the device. In this case, it’s recommended to use the command
Easy Connection located on Online menu.

.#s Easy Connection =
Devices [16/16] Cunent Device Configuration
a0 152 16012112 Devie Mo (e
AR ot 190 16815 15 Device Version EHEY
XP300_
NA3030.152 168 185¢ FLOA Dbtain an IP address automatically
.
s R
25;.[5{355;9’?;1333’1 92.188.17.62 Gateway Address 192 168 . 18 . 86
<P340_192.168.17.58 MAC Address 000110110 26 B

MX3010_1592.168.19.158

|dentify device

Mew Device Configuration
[Obtain an IP address autornatically

IP Address 192 . 168 . 19 . 120
Subnetwark Mask 255 265 2483 . 0
Gateway Address 192 . 168 . 18 . 26

Filter by device madel

Figure 25: Easy Connection

This command performs a MAC level communication with the NET 1 interface of the device, allowing to permanently
change the configuration of the CPU’s Ethernet interface, independently of the IP configuration of the station and from the
one previously configured on the device. So, with this command, it’s possible to change the device configuration to put it on
the same network of the Ethernet interface of the station where MasterTool IEC XE is running, allowing to find and select
the device for the communication. The complete description of Easy Connection command can be found on User Manual of
MasterTool IEC XE code MU299609.

43

\

Q
=
G

4. INITIAL PROGRAMMING

4.7. Login

After compiling the application and fixing errors that might be found, it’s time to send the project to the CPU. To do
this, simply click on Login command located on Online menu of MasterTool IEC XE as shown on the following figure. This
operation may take a few seconds, depending on the size of the generated file.

File Edit View Project Build | Online | Debug Tools Window Help

B=E & 4 Legin AeFE e
[OWC -"‘ : Logout Ctrl+F8
Dj‘c;j E - 1 Create Boot Application
=5 Uhetedl Download :
= m Device (NX3030) Online Change
= @l] PLC Logic Source Download to Connected Device

=k Application
E Bill of Materizls
Configuration and Co
@ Diagnostic Explorer
+2) SystemGVLs Reset Warm
-2 systemPoUs
+2) UserGVLs
+2) UserPOUSs

Z Redundancy Cenfiguration
OPC Configuration

CPU Information

Reset Cold
Reset Origin

m Library Manager Sinulation -

= @ Task Configuration Security 4
- @ MainTask Operating Mode s

@ MainPrg
=[] configuration (Bus) iy Easy Connection
=-[0 Mx3030 (x3030) U0 Clock Settings

% comi Export Online Variables
3 com2 Impaort Online Variables
B NET1

Figure 26: Sending the Project to the CPU

After the command execution, some user interface messages may appear, which are presented due to differences between
an old project and the new project been sent, or simply because there was a variation in some variable.

If the Ethernet configuration of the project is different from the device, the communication may be interrupted at the end of
download process when the new configuration is applied on the device. So, the following warning message will be presented,
asking the user to proceed or not with this operation.

MasterTool IEC XE

The Ethernet cenfiguration is different from PLC, The communication
can be interrupted after downleading application, Do you wish
continue?

Sim Nao
Figure 27: IP Configuration Warning

If there is no application on the CPU, the following message will be presented.

44

\

Q
=
G

4. INITIAL PROGRAMMING

MasterTool [EC XE
Application Application does not exist on device . Do you want to create it and
proceed with download?

Yes ' No] Details. ..

Figure 28: No application on the device

If there is already an application on the CPU, depending on the differences between the projects, the following options will
be presented:

= Login with online change: execute the login and send the new project without stopping the current CPU application
(see Run Mode item), updating the changes when a new cycle is executed.

= Login with download: execute the login and send the new project with the CPU stopped (see Stop Mode). When the
application is initiated, the update will have been done already.

= Login without any change: executes the login without sending the new project.

"MasterTeol IEC XE =

I I . The code has been changed since the last download. What do you want to do?

@ Login with online change.
_) Login with download.
Login without any change.

o] [l (oo

Figure 29: Project Update at the CPU

In the online changes is not permitted to associate symbolic variables mapping from a global
variable list (GVL) and use these variables in another global variable list (GVL).

If the new application contains changes on the configuration, the online change will not be possible. In this case, the
MasterTool IEC XE requests whether the login must be executed as download (stopping the application) or if the operation
must be cancelled.

PS.: The button Details... shows the changes made in the application.

MasterTool IEC XE (=
No online change possible due to severe changes : Do you want to perform a
download?

Yes ' No] Details...

Figure 30: Configuration Changes

Finally, at the end of this process the MasterTool IEC XE offers the option to transfer (download) the source code to the
internal memory of the device, as shown on the following figure:

45 altus

——

4. INITIAL PROGRAMMING

MasterTool IEC XE

9 Do you want te download the source to the target?

You may deactivate this prompt by changing the timing of the 'Seurce
Download' in the 'Project Settings’,

Sim Mio

Figure 31: Source code download

Transferring the source code is fundamental to ensure the future restoration of the project and to perform modifications on
the application that is loaded into the device.

4.8. Run Mode

Right after the project has been sent to the CPU, the application will not be immediately executed (except for the case of
an online change). For that to happen, the command Start must be executed. This way, the user can control the execution of
the application sent to the CPU, allowing pre-configuring initial values which will be used by the CPU on the first execution
cycle.

To execute this command, simply go to the Debug menu and select the option Start, as shown on figure below.

% Untitledl.project - MasterTool IEC XE
File Edit View Project Build Online | Debug | Tools Window Help

VS H &0 o~ 4 B @ x|y Sen 5

@ & (m : Stop Shift+Fa
“Dji.o;j = Wl Mew Breakpoint... :
= J] Lintitled s E] Eiy Edit Breakpoint... o
=[] Device [connected] {(M%3030) Toggle Breakpoint F8 H
-8l PI:C Fagic 20 Disable Breakpoint Q
= Application [stop] Enable Breakpoint ™~

@ Bill of Materials

) Configuration and Consumption B Step Over F10
@ Diagnostic Explorer Step Into F& 1

+-2) SystemGVLs : Step Out Shift+F10

SystemPOUs

1) UserGvls

- _'] UserPOls

5] startrrg (PrE)
@ UserPrg (PRG)

Run to Cursor

Set next Statement

Show next Statement

I

Write Values Ctrl+F7
m Library Manager
: Force Values F7
+ @ Task Configuration
Unforce Values Alt+F7

= m Configuration {Bus)
= nx3030 (x3030) Display Mode

oo

Figure 32: Starting the Application

The figure below shows the application in execution. In case the POU tab is selected, the created variables are listed on a
monitoring window, in which the values can be visualized and forced by the user.

46

Q
=
G

\

4. INITIAL PROGRAMMING

| [_configuration Gus) ' [5] UserPrg x|
Device.Application.UserPrg
Expression Type Value Prepared value Address Comment
@ ivar_0 INT 0
@ ivar_1 INT 0
@ bVar BOOL FALSE
@ wVar WORD 0
-
=] bVarEEE = TEUE THEN

wrar[0 | :=wvar[@ |+ 1;
ivar 0 0] := ivar 10
END_TFRETURN]|

R)

Figure 33: Program running

If the CPU already have a boot application internally stored, it goes automatically to Run Mode when the device is powered
on, with no need for an online command through MasterTool IEC XE.

4.9. Stop Mode

To stop the execution of the application, the user must execute the Stop command, available at the menu Debug, as shown
on figure below.

File Edit View Project Build Online | Debug | Tools Window Help
BEHE & o o f Ba@ X |[fh? » St F5
a & [mla)s m Stop shift-F8_ |
De a2 ’E@ MNew Breakpoint... __r
=5 NTPI45_JIGAOT CPU NX3030_0001) Edit Breakpoint... T
= %) Device [connected] (NX3030) Teggle Breakpoint Fg I
= [0 PLC Logic (01 Disable Breakpoint
=i} Application [run] @ Enable Breakpoint
E Bill of Materials 3
g . = Step Over F10
Configuration and Consumption
: Diagnostic Explorer = Steplnto F8
+-12) SystemGVLs Step Out Shift+F10
: |
H 2 systemPoUs Run to Cursor
+ I3 UserFunctions Set next Statement
+-I2) UserFunctionsBlocks
+-3) UserGils - Show next Statement
+100 Useris Write Values Ctrl+ F7
+ D userPous Force Values F7
+.
© sersiruct Unforce Values Alt+F7
@ FidretainGUL e
ﬂﬂ Library Manager Hape s
R e e

Figure 34

: Stopping the Application

In case the CPU is initialized without the stored application, it automatically goes to Stop Mode, as it happens when a

software exception occurs.

47

\

=
&

4. INITIAL PROGRAMMING

4.10. Writing and Forcing Variables

After Logging into a PLC, the user can write or force values to a variable of the project.

The writing command (CTRL + F7) writes a value into a variable and this value could be overwritten by instructions
executed in the application.

Moreover, the forced writing command (F7) writes a value into a variable without allowing this value to be changed until
the forced variables are released.

It is important to highlight that, when used the MODBUS RTU Slave and the MODBUS Ethernet Server, and the Read-only
option from the configured relations is not selected, the forced writing command (F7) must be done over the available variables
in the monitoring window as the writing command (CTRL + F7) leaves the variables to be overwritten when new readings are
done.

The variables forcing can be done in Online mode.
Diagnostic variables cannot be forced, only written, because diagnostics are provided by the
CPU and will be overwritten by it.

When a forced writing is performed in a redundant variable of the Active PLC, the application’s MainTask will suffer
an impact on its execution time, both in the Active PLC and in the Reserve PLC. This is because the two Half-Clusters will
exchange information about the forced variables every cycle. Therefore, when forcing variables in a redundant system, the
addition that the task execution can have must be considered. The table below exemplifies how much will be increased, on
average, in the execution of MainTask when this occurs:

Active CP Reserve CP
Runtime 50ms | 100ms | 200ms | S50 ms | 100 ms | 200 ms
Addition with 10 forces | 2,4 % 2,2 % 1,7 % 4.0 % 3.4 % 2,0 %
Add to 50 forces 120% | 9,2 % 6,0% | 18,0% | 120% | 8,0%
Add with 128 forcings | 26,0% | 21,0% | 16,0% | 56,0 % | 34,0% | 22,5 %

Table 42: Influence of Forcing Variables on a Redundant CP

When a CPU is with forced variables and it is de-energized, the variables will lose the forc-
ing in the next initialization.

The limit of forcing for the Nexto CPUs is 128 variables, regardless of model or configura-
tion of CPU used.

4.11. Logout

To finalize the online communication with the CPU, the command Logout must be executed, located in the Online menu,
as shown on figure below.

48

Q
=
G

\

4. INITIAL PROGRAMMING

File Edit View Project Build | Online | Debug Tools Window Help
-‘i% e H| S| = § By R % Login Alt+F8 3
g & ml{ﬁlﬁ |q Logout Ctrl+F8 |
Devi Create Boot Application !
= [5) NTPI45_JIGAOZ CPUNX3030_0001 Bownload R
= [T Device [connected] (NX3030) Online Change]
= @l] PLC Logic Source Download to Connected Device
- a Sunbcabosjay 2% Redundancy Configuration
E Bill of Materials
. OPC Configuration
Configuration and Corf)
@ Diagnostic Explorer CPU Information |
#2) systemGyLs Reset Warm
i g SySiSmELE Reset Cold
+ UserFunct
SR Reset Origin
+-{Z) UserFunctionsBlocks
+.2) UserGils Simulation -
+-[2) UserNvLs Security 2
+-0) userPoUs Operating Mode 3
+-12) UserStruct
) .
@ PidretainGL iy Easy Connection
fiff Library Manager ' Clock Settings
FIDControl (PRG) Export Online Variables
#-f Redpe Manager Import Online Variables
@@ Rredundancy Configur

Figure 35: Finalizing the online communication with the CPU

4.12. Project Upload

Nexto Series CPUs are capable to store the source code of the application on the internal memory of the device, allowing
future retrieval (upload) of the complete project and to modify the application.

To recover a project previously stored on the internal memory of the CPU, the command located on File menu must be
executed as shown on the following figure.

File | Edit View Project Build Online Debug

FE

=] Mew Project... Ctrl+MN r:
Open Project... Ctrl+Q

¥ [

Close Project

Save Project Ctrl+5
= j
Save Project As...

nnzl |

Project Archive [

Source Upload...

Source Download...

&b Print...

Print Preview...
[PageSetup..

Recent Projects r

=l

Exit Alt+F4

il

—

Figure 36: Project Upload Option

Next, just select the desired CPU and click OK, as shown on figure below.

49

\

Q
=
G

4. INITIAL PROGRAMMING

Select the network path to the controller:

= gfye Gateway-1 DeviceMame: ~ | Add Gat=way...
[l DONT_TOUCH_XP325_192.168.17.62 [013E] L
= i el e Add Device...
@ ©n-9372[0764] .
[Gn-9373 [0765] g’;;g"’e“"" = Delete
[l Hx3040_192.168.18.140 [028C]
EI HIX3040_LAB [0285] Sg',)ckd"ven Scan Network
[nox003_192.168.19.120 [0378] Wink
Encrypted
NX3004_192.168.19.113 [0371
i - [o371] |Communication:
[f noc005_Mastertool_192.168.19.155 [0398] ITLS supported
NX3010_192.168.18.112 [0270
i . 10270] Number of
[l mx3010_192.168.19.158 [039E] channels:
[l [os030_182.168.18.158 [029E] 8
(@ noc030_192.168.18.54_PLCA [0236] 1
[f Nx3030_192.166.18.55_PLCE [0237] 00E0DC00950 1
[l nxs100_192.168.19.157 [039D] Target D¢
[nxs100_192.168.23.52 [0734] 1025 AD30
[l nors101_192.168.19.202 [03CA) target name:
[nxs101_192.168.23.60 [073C] NEXTO PLC
[noxs110_192.168.23.21 [0715] Target Type:
[nos110_192.168.23.22 [0716] 4096
[l nxs110_192.168.23.27 [0718] R
[noxs110_192.168.23.9 [0709] Altus
[nos210_192.168.23.10 [0704] 3
Target Version:
[l nxs210_192.168.23.11 [0708] 1.8.8.0 w
==

Figure 37: Selecting the CPU

To ensure that the project loaded in the CPU is identical and can be accessed in other workstations, consult the chapter
Projects Download/Login Method without Project Differences at the MasterTool IEC XE User Manual MT8500 - MU299609.

ATTENTION

The memory size area to store a project in the Nexto CPUs is defined on section Memory.

ATTENTION

The upload recovers the last project stored in the controller as described in the previous
paragraphs. In case only the application was downloaded, without transferring its source
code, it will not be possible to be recovered by the Upload procedure.

4.13. CPU Operating States

4.13.1. Run

When a CPU is in Run mode, all application tasks are executed.

4.13.2. Stop

When a CPU is in Stop mode, all application tasks are stopped. The variable values in the tasks are kept with the current
value and output points go to the safe state.

When a CPU goes to the Stop mode due to the download of an application, the variables in the application tasks will be
lost except the persistent variables type.

4.13.3. Breakpoint

When a debugging mark is reached in a task, it is interrupted. All the active tasks in the application will not be interrupted,
continuing their execution. With this feature, it’s possible to go through and investigate the program flow step by step in Online
mode according to the positions of the interruptions included through the editor.

For further information about the use of breakpoints, please consult the MasterTool IEC XE Utilization Manual - MU299609.

Q
=
G

\

4. INITIAL PROGRAMMING

4.13.4. Exception

When a CPU is in Exception it indicates that some improper operation occurred in one of the application active tasks. The
task which caused the Exception will be suspended and the other tasks will pass for the Stop mode. It is only possible to take
off the tasks from this state and set them in execution again after a new CPU start condition. Therefore, only with a Reset
Warm, Reset Cold, Reset Origin or a CPU restart puts the application again in Run mode.

4.13.5. Reset Warm

This command puts the CPU in Stop mode and initializes all the application tasks variables, except the persistent and
retentive type variables. The variables initialized with a specific value will assume exactly this value, the other variables will
assume the standard initialization value (zero).

4.13.6. Reset Cold

This command puts the CPU in Stop mode and initializes all the application tasks variables, except the persistent type
variables. The variables initialized with a specific value will assume exactly this value, the other variables will assume the
standard initialization value (zero).

4.13.7. Reset Origen

This command removes all application task variables, including persistent type variables, deletes the application CPU and
puts the CPU in Stop mode.

Notes:
Reset: When a Reset is executed, the breakpoints defined in the application are disabled.

Command: To execute the commands Reset Warm, Cold or Origin, it’s necessary to have MasterTool IEC XE in Online
mode with the CPU.

4.13.8. Reset Process Command (IEC 60870-5-104)

This process reset command can be solicited by IEC 60870-5-104 clients. After answer the client, the CPU start a rebooting
process, as if being done an energizing cycle.

In case of redundant PLCs, the process reset command is synchronized with the non-active PLC, resulting the reboot of
both PLCs.

The standard IEC 60870-5-104 foresee a qualification value pass (0..255) with the process reset command, but this “pa-
rameter” is not considered by the CPU.

4.14. Programs (POUs) and Global Variable Lists (GVLs)

The project created by MasterTool IEC XE contains a set of program modules (POUs) and global variables lists that aims
to facilitate the programming and utilization of the controller. The following sections describe the main elements that are part
of this standard project structure.

4.14.1. MainPrg Program

The MainTask is associated to one unique POU of program type, named MainPrg. The MainPrg program is created
automatically and cannot be edited by user.

The MainPrg program code is the following, in ST language:

(¥Main POU associated with MainTask that calls StartPrg,
UserPrg/ActivePrg and NonSkippedPrg.
This POU is blocked to edit.x)

PROGRAM MainPrg
VAR

isFirstCycle : BOOL := TRUE;
END_VAR

4. INITIAL PROGRAMMING

SpecialVariablesPrg() ;

IF isFirstCycle THEN
StartPrg() ;
isFirstCycle := FALSE;

ELSE
UserPrg();

END_IF;

MainPrg call other two POUs of program type, named StartPrg and UserPrg. While the UserPrg is always called, the
StartPrg is only called once in the PLC application start.

To the opposite of MainPrg program, that must not be modified, the user can change the StartPrg and UserPrg programs.
Initially, when the project is created from the wizard, these two programs are created empty, but the user might insert code in
them.

4.14.2. StartPrg Program
In this POU the user might create logics, loops, start variables, etc. that will be executed only one time in the first PLC’s
cycle, before execute UserPrg POU by the first time. And not being called again during the project execution.

In case the user load a new application, or if the PLC gets powered off, as well as in Reset Origin, Reset Cold and Reset
Warm conditions, this POU is going to be executed again.

4.14.3. UserPrg Program

In this POU the user must create the main application, responsible by its own process control. This POU is called by the
main POU (MainPrg).

The user can also create additional POUs (programs, functions or function blocks), and called them or instance them inside
UserPrg POU, to ends of its program instruction. Also it is possible to call functions and instance function blocks defined in
libraries.

4.14.4. GVL System_Diagnostics

The System_Diagnostics GVL contains the diagnostic variables of the CPU, of the communication interface (Ethernet and
PROFIBUS) and of all communication drivers. This GVL isn’t editable and the variables are declared automatically with type
specified by the device to which it belongs when it is added to the project.

In System_Diagnostics GVL, are also declared the diagnostic variables of the direct repre-
sentation MODBUS Client/Master Requests.

Some devices, like the MODBUS Symbol communication driver, doesn’t have its diagnostics allocated at %Q variables
with the AT directive. The same occurs with newest communication drivers, as Server IEC 60870-5-104.

The following picture shows an example of the presentation of this GVL when in Online mode.

52

Q
=
G

\

4. INITIAL PROGRAMMING

Device.Application.System_Diagnostics

Expression Type Value Address Con
+ DG_IEC_A0870_5_104_Server T_DIAG_IEC104_SERVER_1 DG_1
= & DG_MODBUS_Symbol_Client T_DIAG_MODBUS_ETH_CLIENT 1 DG_t
+ @ tDiag T_DIAG_MODBUS_DIAGNOSTICS CLIENT
@ byDiag_1_reserved BYTE 0 Rese
+ @ tCommand T_DIAG_MODBUS_COMMANDS
@ byDiag_3_reserved BYTE 0 Rese
- @ totat T_DIAG_MODBUS_ETH_CLIENT_STATS
@ wTXRequests WORD 1589 Coun
@ wR¥NormalResponses WORD 1588 Coun
@ wRXExceptionResponses WORD 0 Coun
@ wR¥IllegalResponses WORD 0 Coun
@ wDiag_12_reserved WORD 0 Rese
@ wDiag_14_reserved WORD 0 Rese
@ wDiag_16_reserved WORD 0 Rese
@ wDiag_18_reserved WORD 0 Rese
+ {@ DG_MODBUS Symbol_Client_NX5000 T_DIAG_MODBUS_ETH_CLIENT_1 DG_t
+ @ DG_MODBUS_Symbol_RTU_Master T_DIAG_MODBUS_RTU_MASTER_1 DG_t
+ @ DG_MODBUS_Symbol_Server_NX5000 T_DIAG_MODBUS_ETH_SERVER_1 DG_!
= & DG_Nx3030 T_DIAG_NX3030_1 9,(QB66228 DG_D
+ @ tSummarized T _DIAG_SUMMARIZED_1
+ @ tDetailed T_DIAG_DETAILED_1
+ @ DG_Nx5001 T_DIAG_NX5001_1 %(B6622 DG_D
+ @ DG_MODBUS_Client T_DIAG_MODEBUS_ETH_CLIENT 1 9%0B67191 DG_D
= 4 DG_MBUS Direct_1_Mapping_000 T_DIAG_MODBUS_ETH_MAPPING_1 %QB67211 DG_D
= @ byStatus T_DIAG_MODBUS_ETH_MAPPING_STAT...
& bCommIdle BIT Comr
@ bCommExecuting BIT Comr
& bCommPostponed BIT Comr
@ bCommDisabled BIT Comr
4 bCommOk BIT Previ
@ bCommError BIT Previ
@ bCommaborted BIT Previ
& bDiag_7_reserved BIT FALSE Rese
@ elastErrorCode MASTER_ERROR_CODE MNO_ERROR Last
@ elastBxceptionCode MODBUS_EXCEPTION NO_EXCEPTION Last
@ byDiag_3_reserved BYTE 0 reser
@ wCommCounter WORD 397 Coun
@ wCommErrorCaunter WORD 0 Coun
+ @ DG_MBUS Direct_1_Mapping_001 T_DIAG_MODBUS_ETH_MAPPING_1 %QB6721% DG_D
+ {@ DG_MBUS Direct_i_Mapping_003 T_DIAG_MODBUS_ETH_MAPPING_1 %QB67235 DG_D
+ {@ DG_MBUS Direct_1_Mapping_002 T_DIAG_MODBUS_ETH_MAPPING_1 %QB67243 DG_D
+ @ DG_Nx5000 T_DIAG_NX5000_1 9%0B67251 DG_P

Figure 38: System_Diagnostics GVL in Online Mode

4.14.5. GVL Disables

The Disables GVL contains the MODBUS Master/Client by symbolic mapping requisition disabling variables. It is not
mandatory, but it is recommended to use the automatic generation of these variables, which is done clicking in the button
Generate Disabling Variables in device requisition tab. These variables are declared as type BOOL and follow the following
structure:

Requisition disabling variables declaration:

[Device Name]_DISABLE_[Requisition Number] : BOOL;

Where:
Device name: Name that shows on Tree View to the MODBUS device.

Requisition Number: Requisition number that was declared on the MODBUS device requisition table following the
sequence from up to down, starting on 0001.

Example:
Device.Application.Disables

53

Q
=
G

\

4. INITIAL PROGRAMMING

VAR_GLOBAL

MODBUS_Device DISABLE_0001 BOOL;
MODBUS_Device DISABLE_0002 BOOL;
MODBUS_Device_ DISABLE_0003 BOOL;
MODBUS_Device_1_DISABLE_0001 BOOL;
MODBUS_Device_1_DISABLE_0002 BOOL;

END_VAR

The automatic generation through button Generate Disabling Variables only create variables, and don’t remove automati-
cally. This way, in case any relation is removed, its respective disabling variable must be removed manually.

The Disables GVL is editable, therefore the requisition disabling variables can be created manually without need of fol-
lowing the model created by the automatic declaration and can be used both ways at same time, but must always be of BOOL
type. And it is need to take care to do not delete or change the automatic declared variables, cause them can being used for
some MODBUS device. If the variable be deleted or changed then an error is going to be generated while the project is being
compiled. To correct the automatically declared variable name, it must be followed the model exemplified above according to
the device and the requisition to which they belong.

The following picture shows an example of the presentation of this GVL when in Online mode. If the variable values are
TRUE it means that the requisition to which the variables belong is disabled and the opposite is valid when the variable value
is FALSE.

Expression Type Value Preparec
@ MODBUS Slave_1_DISABLE 0001 BOOL
@ MODBUS_Slave_1_DISABLE 0002 BOOL
@ MODBUS_Slave_1 DISABLE 0003 BOOL
.

BOOL
BOOL
BOOL

@ MODBUS_Slave_1_DISABLE D004
@ MODBUS_Server_1_DISABLE 0001
@ MODBUS_Server_1_DISABLE_D002

=

@ MODBUS_Server_1_DISABLE_0003 BOOL
@@ MODBUS_Server_1_DISABLE_0004 BOOL

Figure 39: Disable GVL in Online Mode

4.14.6. GVL I0Qualities

The 10Qualities GVL contains the quality variables of I/O modules declared on CPU’s bus. This GVL is not editable and
the variables are automatically declared as LibDataTypes. QUALITY type arrays, and dimensions according to I/Os quantities
of the module to which it belongs when that is added to the project.

Example: Device.Application.IOQualities

VAR_GLOBAL

QUALITY_NX1001: ARRAY[O0..15] OF LibDataTypes.QUALITY;
QUALITY_NX2020: ARRAY[O0..15] OF LibDataTypes.QUALITY;
QUALITY_NX6000: ARRAY[O0..7] OF LibDataTypes.QUALITY;
QUALITY_NX6100: ARRAY[O0..3] OF LibDataTypes.QUALITY;

END_VAR

Once the application is in RUN it is possible to watch the I/O modules quality variables values that were added to the
project through /OQualities GVL.

4.14.7. GVL Module_Diagnostics

The Module_Diagnostics GVL contains the diagnostics variables of the I/O modules used in the project, except by the
CPU and communication drivers. This GVL isn’t editable and the variables are automatically declared with type specified by

54 altus

——

4. INITIAL PROGRAMMING

the module, to which it belongs, when that is added to the project.
The following picture shows an example of the presentation of this GVL when in Online mode.

Device.Application.Module_Diagnostics

Expression Type Value Address Comment

= @ pG_Nx1001 T_DIAG_NX1001_1 %QB67008 DG_NX1001diagnosticsvariable
= & tGeneral T_DIAG_GENERAL_NX1001_1
@ bReserved_g BIT Rezerved
@ bReserved_9 BIT Reserved
@ bReserved_10 BIT Reserved
4 bReserved_11 BIT Reserved
@ bReserved_12 BIT Reserved
@ bReserved_13 BIT Reserved
4 bReserved_14 BIT Reserved
& bReserved_15 BIT Reserved
@ bActiveDiagnostics BIT Module hasactive diagnostics
& bFatalError BIT Madule has fatal error
@ bConfigMismatch BIT Module has parameterization error
4 bWatchdogError BIT Madule has watchdog expired
4 bOTDSwitchError BIT Madule one touch diag switch error
@ bReserved_5 BIT Reserved
4 bReserved_8 BIT Reserved
4 bReserved_7 BIT Reserved

+ @ DG_Nx1005
+ @ DG_Nx2001
+ (@ DG_Nxz020
+ @ DG_Nx&000

T_DIAG_NX1005_t
T_DIAG_NX2001_t
T_DIAG_NX2020_1
T_DIAG_NX5000_t

%%QB67010 DG_NX1005 diagnosticsvariable
%L QBE7014 DG_NX2001diagnosticsvariable
SLQB67018 DG_NX2020 diagnosticsvariable
%%QB67022 DG_NX6000 diagnosticsvariable

= @ DG_Nx6100 T_DIAG_NX6100_1 %QB67040 DG_NX6100 diagnostics variable
= & tGeneral T_DIAG_GENERAL_NX6100_1
4 bActiveDiagnosticsOutputdd BIT Output 00 with diagnostics
& bActiveDiagnosticsOutputdl BIT Output 01 with diagnostics
@ bActiveDiagnosticsOutputd2 BIT Output 02 with diagnostics
@ bActiveDiagnosticsOutputd3 BIT Output 03 with diagnostics
@ bReserved_12 BIT Reserved
4 bReserved_13 BIT Reserved
@ bReserved_14 BIT Reserved
@ bReserved_15 BIT Reserved
4 bActiveDiagnostic BIT Madule has active diagnostics
& bFatalError BIT Module has fatal error
& bConfigMismatch BIT Module has parameterization error
4 bWatchdogError BIT Madule has watchdog expired
@ bOTDSwitchError BIT Module one touch diag switch error
bcCalibrationErrar BIT Madule has calibration error
4 bNoExternalSupply BIT External power s...y is below the ...
@ bReserved_07 BIT Reserved

= & tDetailed
+# ¢ tAnalogOutput_00

T_DIAG_DETAILED_NX5100_1
T_DIAG_ANALOG_QOUTPUT
+ @ tAnalogOutput_01 T_DIAG_ANALOG_OUTPUT
* @ tAnalogOutput_02 T_DIAG_ANALOG_OUTPUT

Figure 40: Module_Diagnostics GVL in Online Mode

4.14.8. GVL Qualities

The Qualities GVL contains the quality variable of the internal variables MODBUS Master/Client of symbolic mapping.
It is not mandatory but is recommended to use these variables’ automatic generation, what is done clicking on button Generate
Quality Variables in the device mapping tab. These variables are declared as LibDataTypes.QUALITY type and follow the
following structure:

Quality mapping variable declaration:

[Device Name]_ QUALITY_ [Mapping Number]: LibDataTypes.QUALITY;

55

Q
=
G

\

4. INITIAL PROGRAMMING

Where:
Device Name: Name that appear at the Tree View to the device.

Mapping Number: Number of the mapping that was declared on the device mapping table, following the up to down
sequence, starting with 0001.

It is not possible to associate quality variables to the direct representation MODBUS Mas-
ter/Client drivers’ mappings. Therefore it is recommended the use of symbolic mapping
MODBUS drivers.

Example: Device.Application.Qualities

VAR_GLOBAL
MODBUS_Device QUALITY_ _0001: LibDataTypes.QUALITY;
MODBUS_Device_QUALITY_0002: LibDataTypes.QUALITY;
MODBUS_Device_ QUALITY_0003: LibDataTypes.QUALITY;
END_VAR

The Qualities GVL is editable, therefore the mapping quality variables can be created manually without need to follow the
automatic declaration model, and can be used both ways at same time. But must always be of LibDataTypes. QUALITY type
and take care to don’t delete or change a variable automatically declared, because they might being used by some device. If the
variable be deleted or changed an error is going to be generated while the project is being compiled. To correct the automatically
declared variable name, it must be followed the model exemplified above according to the device and the requisition to which
they belong.

To the MODBUS communication devices the quality variables behave on the way showed at Table 56.
The following picture shows an example of the presentation of this GVL when in Online mode.

ATTENTION

If a symbolic mapping MODBUS Client/Master driver’s variable be mapped in IEC 60870-
5-104 Server driver, it is necessary that the MODBUS mapping quality variables had been
created to generate valid quality events to such IEC 60870-5-104 Server points. Case op-
posite, aren’t going to be generated “bad” quality events to IEC 60870-5-104 Server clients
in the situations that MODBUS Master/Client can’t communicate with its slaves/servers, by
example.

56

Q
=
G

\

4. INITIAL PROGRAMMING

Expression Type Value Address Comment
= @@ MODBUS_Slave_1_QUALITY_0001 LibDataTypes.QUALITY
% VALIDITY QUALITY_VALIDITY VALIDITY_GOOD Qualityvalidity
= @ FLAGS QUALITY_FLAGS Quality flags
% FLAG_OUT_OF_RANGE BIT Bit 8
& FLAG_INACCURATE BIT Bit 9
@ FLAG_OLD_DATA BIT Bit 10
& FLAG_FAILURE BIT Bit 11
& FLAG_OPERATOR_BLOCKED BIT Bit 12
& FLAG_TEST BIT Bit 13
& FLAG_RESERVED_Q BIT Bit 14
& FLAG_RESERVED_1 BIT Bit 15
& FLAG_RESTART BIT Bit 0
§ FLAG_COMM_FAIL BIT Bit 1
% FLAG_REMOTE_SUBSTITU.. BIT Bit 2
& FLAG_LOCAL_SUBSTITUTED BIT Bit 3
& FLAG_FILTER BIT Bit 4
& FLAG_OVERFLOW BIT Bit 5
& FLAG_REFERENCE_ERROR BIT Bit &
& FLAG_INCONSISTENT BIT Bit7
+ @ MODBUS_Slave_1_QUALITY_0002 LibDataTypes.QUALITY
+ {@ MODBUS Slave_1_QUALITY_0003 LibDataTypes.QUALITY
+ @ MODBUS Slave_1_QUALITY_0004 LibDataTypes.QUALITY
+ f@ MODBUS_Server_1_QUALITY_0001 LibDataTypes.QUALITY
+ {@ MODBUS_Server_1_QUALITY_0002 LibDataTypes.QUALITY
= @@ MODBUS_Server_1_QUALITY_0003 LibDataTypes.QUALITY
% VALIDITY QUALITY_VALIDITY VALIDITY_QUESTIONABLE Qualityvalidity
= @ FLAGS QUALITY_FLAGS Quality flags
% FLAG_OUT_OF_RANGE BIT Bit 8
& FLAG_INACCURATE BIT Bit 9
@ FLAG_OLD_DATA BIT Bit 10
& FLAG_FAILURE BIT Bit 11
& FLAG_OPERATOR_BLOCKED BIT Bit 12
& FLAG_TEST BIT Bit 13
& FLAG_RESERVED_Q BIT Bit 14
& FLAG_RESERVED_1 BIT Bit 15
& FLAG_RESTART BIT Bit 0
§ FLAG_COMM_FAIL BIT Bit 1
% FLAG_REMOTE_SUBSTITU.. BIT Bit 2
& FLAG_LOCAL_SUBSTITUTED BIT Bit 3
& FLAG_FILTER BIT Bit 4
& FLAG_OVERFLOW BIT Bit 5
& FLAG_REFERENCE_ERROR BIT Bit &
& FLAG_INCONSISTENT BIT Bit7
+ (@ MODBUS_Server_1_QUALITY_0004 LibDataTypes.QUALITY

Figure 41: Qualities GVL in Online Mode

4.14.9. GVL ReqDiagnostics

The RegDiagnostics GVL contains the requisition diagnostics variables of symbolic mapping MODBUS Master/Client. It
is not mandatory, but recommended the use of these variables’ automatic generation, what is done by clicking in the button
Generate Diagnostics Variables in device requests tab. These variables declaration follow the following structure:

Requisition diagnostic variable declaration:

[Device Name]_ REQDG_[Requisition Number]: [Variable Typel;

Where:
Device Name: Name that appear at the Tree View to the device.

Mapping Number: Number of the mapping that was declared on the device mapping table, following the up to down
sequence, starting with 0001.

Variable Type: NXMODBUS_DIAGNOSTIC_STRUCTS.T_DIAG_MODBUS_RTU_MAPPING_1 to MODBUS Mas-
ter and NXMODBUS_DIAGNOSTIC_STRUCTS.T_DIAG_MODBUS_ETH_MAPPING_1 to MODBUS Client.

57 altus

——

4. INITIAL PROGRAMMING

The requisition diagnostics variables of direct mapping MODBUS Master/Client are de-
clared at System_Diagnostics GVL.

Example:
Device.Application.ReqDiagnostics

VAR_GLOBAL
MODBUS_Device REQDG_0001 : NXMODBUS_DIAGNOSTIC_STRUCTS.
T_DIAG_MODBUS_RTU_MAPPING_1;
MODBUS_Device_REQDG_0002 : NXMODBUS_DIAGNOSTIC_STRUCTS.
T_DIAG_MODBUS_RTU_MAPPING_1;
MODBUS_Device REQDG_0003 : NXMODBUS_DIAGNOSTIC_STRUCTS.
T_DIAG_MODBUS_RTU_MAPPING_1;
MODBUS_Device_1_REQDG_0001 : NXMODBUS_DIAGNOSTIC_STRUCTS.
T_DIAG_MODBUS_ETH_MAPPING_1;
MODBUS_Device_1 REQDG_0002 : NXMODBUS_DIAGNOSTIC_STRUCTS.
T_DIAG_MODBUS_ETH MAPPING_1;
END_VAR

The RegDiagnostics GVL is editable, therefore the requisitions diagnostic variables can be manually created without need
to follow the model created by the automatic declaration. Both ways can be used at same time, but the variables must always
be of type referring to the device. And take care to don’t delete or change a variable automatically declared, because they might
being used by some device. If the variable be deleted or changed an error is going to be generated while the project is being
compiled. To correct the automatically declared variable name, it must be followed the model exemplified above according to
the device and the requisition to which they belong.

The following picture shows an example of the presentation of this GVL when in Online mode.

Device.Application.RegDiagnostics

Expression Type Value
= 4 MODBUS_Slave_1_REQDG_0001 NXMODBUS_DIAGNOSTIC_STRUCTS.T_DIAG_MODBUS...
+ @ byStatus T_DIAG_MODBUS RTU_MAPPING_STATUS

% elastErrorCode MASTER_ERROR_CODE NO_ERROR
@ elastExceptionCode MODBUS_EXCEPTION NO_BEXCEPTION
@ byDiag_3_reserved BYTE 0
@ wCommCounter WORD 969
@ wCommErrorCounter WORD 0

+ {@ MODBUS_Slave_1_REQDG_0002 NXMODBUS_DIAGNOSTIC_STRUCTS.T_DIAG_MODBUS...

+ @ MODBUS_Slave_1_REQDG_0003 NXMODBUS_DIAGNOSTIC_STRUCTS.T_DIAG_MODBUS...

+ @ MODBUS_Slave_1_REQDG_0004 NXMODBUS_DIAGNOSTIC_STRUCTS.T_DIAG_MODBUS...

+ @ MODBUS_Server_1_REQDG_0001 NXMODBUS_DIAGNOSTIC_STRUCTS.T_DIAG_MODBUS...

+ f@ MODBUS_Server_1_REQDG_D002 NXMODBUS_DIAGNOSTIC_STRUCTS.T_DIAG_MODBUS...

@ MODBUS Server_1 REQDG_0003 NXMODBUS_DIAGNOSTIC_STRUCTS.T_DIAG_MODBUS...

+ @ bysStatus T_DIAG_MODBUS_ETH_MAPPING_STATUS
@ elastErrorCode MASTER_ERROR_CODE ERR_CONNECTION_TIMEQUT
@ elastExceptionCode MODBUS_EXCEPTION NO_EXCEPTION
@ byDiag_3_reserved BYTE 0
@ wCommCounter WORD 116
@ wCommErrorCounter WORD 49

+ @@ MODBUS Server_i REQDG_0004 NXMODEUS DIAGNOSTIC_STRUCTST DIAG_MODBUS...

Figure 42: ReqDiagnostics GVL in Online Mode

58

\

Q
=
G

4. INITIAL PROGRAMMING

4.14.10. Prepare_Start Function

In this POU, the PrepareStart system event function is defined. It belongs to the communication task and is called before
starting the application. When there is active communication with the PLC, it is possible to observe the event status and the
call count in the System Events tab in the Task Configuration object. Every time the user starts the application, the count is
incremented.

4.14.11. Prepare_Stop Function

In this POU, the PrepareStop system event function is defined. It belongs to the communication task and is called before
stopping the application. When there is active communication with the PLC, it is possible to observe the event status and the
call count in the System Events tab in the Task Configuration object. Every time the user stops the application, the count is
incremented.

4.14.12. Start_Done Function

In this POU, the StartDone system event function is defined. It belongs to the communication task and is called when the
application is successfully started. When there is active communication with the PLC, it is possible to observe the event status
and the call count in the System Events tab in the Task Configuration object. Every time the user successfully launches the
application, the count is incremented.

4.14.13. Stop_Done Function

In this POU, the StopDone system event function is defined. It belongs to the communication task and is called when
the application is successfully stopped. When there is active communication with the PLC, it is possible to observe the event
status and the call count in the System Events tab in the Task Configuration object. Every time the user successfully stops the
application, the count is incremented.

5. CONFIGURATION

5. Configuration

The Nexto Series CPUs are configured and programmed through the MasterTool IEC XE software. The configuration made
defines the behavior and utilization modes for peripherals use and the CPUs special features. The programming represents the
Application developed by the user.

5.1. Device

5.1.1. User Management and Access Rights

It provides functions to define users accounts and to configure the access rights to the project and to the CPU. Using the
software MasterTool IEC XE, it’s possible to create and manage users and groups, setting, different access right levels to the
project.

Simultaneously, the Nexto CPUs have an user permissions management system that blocks or allows certain actions for
each user group in the CPU. For more information, consult the MasterTool IEC XE User Manual MT8500 — MU299609, in
the User Management and Access Rights section.

5.1.2. PLC Settings

On this tab of the generic device editor, you make the basic settings for the configuration of the PLC, for example the
handling of inputs and outputs and the bus cycle task.

Configuration (Bus) m Device X
Communication Settings Application for If0 handling Application 4
Files PLC Settings

Update If0 while in stop

Log Behavior for outputs in stop Set all outputs to default ~
Users and Groups Always update variables Disabled (update only if used in a task) ~
Access Rights Bus Cyde Options

Bus cyde task <unspecified= k2
Applications

Additional Settings
Information Generate force variables for 10 mapping Enable diagnosis for devices
PLC Settings [_J show 1/0 warnings as errors [_J Enable symbolic access for I0s

Figure 43: PLC Settings

Parameter Description

Application for I/O handling Application that is responsible for the I/O handling.

TRUE: The values of the input and output channels are also
Refresh 1/Os in stop refreshed when the PLC is in STOP mode. If the watchdog de-
tects a malfunction, the outputs are set to the predefined default
values.

FALSE: The values of the input and output channels in STOP
mode are not refreshed.

5. CONFIGURATION

Parameter

Description

Behavior of the outputs at
stop

Handling of the output channels when the controller enters
STOP mode:

Retain values: The current values are retained.

All outputs to default value: The default values resulting from
the I/O mapping are assigned.

Execute program: The handling of the output values is con-
trolled by a program contained in the project which is executed
in STOP mode. Enter the name of the program in the field on
the right.

Always update variables

Globally defines whether or not the I/O variables are updated in
the bus cycle task.

This setting is effective for the I/O variables of the slaves and
modules only if "deactivated" is defined in their update settings.
Deactivated (update only if used in a task): The I/O variables
are updated only if they are used in a task.

Enabled 1 (use bus cycle task if not used in any task): The
I/O variables in the bus cycle task are updated if they are not
used in any other task.

Enabled 2 (always in bus cycle task): All variables in each
cycle of the bus cycle task are updated, regardless of whether
they are used and whether they are mapped to an input or output
channel.

Bus cycle task

Task that controls the bus cycle. By default the task defined by
the device description is entered.

By default, the bus cycle setting of the superordinate bus de-
vice applies (use cycle settings of the superordinate bus). This
means that the device tree is searched upwards for the next valid
definition of the bus cycle task.

Force variables for the I/0
mapping

TRUE: When compiling the application, two global variables
are created for each I/O channel which is mapped to a variable
in the I/O Mapping dialog.

Activate diagnostics for de-
vices

TRUE: The CAA Device Diagnosis library is integrated in the
project. An implicit function block is generated for each device.
If there is already a function block for the device, then either an
extended function block is generated (example: EtherCAT) or
another function block instance is added. This then contains a
general implementation of the device diagnostics.

Display I/O warnings as er-
rors

Warnings concerning the I/O configuration are displayed as er-
TOorS.

Enable symbolic access for
I/Os

TRUE: It allows access to I/O points from the internal symbolic
name generated in the device declaration. The symbolic name
can be consulted in the Channel column on the Bus I/0 Mapping
tab of each device.

Table 43: PLC Settings

The Nexto (NX), Nexto Jet (NJ) and Xtorm (HX) products do not support the Enable sym-
bolic access for I/O parameter.

61

Q
=
G

\

5. CONFIGURATION

5.2. CPU Configuration

5.2.1. General Parameters

The parameters related below are part of the CPU configuration included in the application. Each item must be properly
verified for the correct project execution.

Besides these parameters, it is possible to change the name of each module inserted in the application by clicking the right
button on the module. In the Properties item from the Common sheet, change the name, what is limited to 24 characters.

Settings Description Standard | Options
Diagnostics Area (% Q)
Automatically
%Q Start Address SFarting ?ddress of the UCP allqcated o | 1097611
diagnostics (%Q) project cre-
ation.
. . . . It is not possible to change
Size E;ZtZs of diagnostics area in 693 the size of the CPU diagnos-
tics area
Retaining Area (% Q)
%Q Start Address gifg‘;tgaaiiflisr;’f(gzgeten' 4096 0 to 98303
Size Retain data memory size in 08304 0 to 98304
bytes
Persistent Area (% Q)
%Q Start Address l;g;srf::‘gf%dg)a memory start | 0480 0 to 98302
Size }’ersistent data memory size 08304 0 to 98304
in bytes
CPU Parameters
When enabled, starts the
user application after reset-
.. ting the hardware watchdog
f;:l;eg:: ;yA\?\/I;l:ccl?(tllgg af- or .rest.ar.ting Runti.me, bgt Disabled Er'labled
maintaining the diagnostic Disabled
indication via WD LED and
via variables.
- Denabled, only for de-
Enabled, clared modules ’
no . match - Disabled (with match con-|
Hot Swap Mode Module hot swap mode Z:r(;r;smtency. sistency)
Y . vary - Disabled, no match consis-
according to
CPU model) tency)
- Enabled, with match con-
sistency only for declared
modules
- Enabled, with match con-
sistency
- Enabled, no match consis-
tency

62

altus

5. CONFIGURATION

Settings Description Standard Options
Project Parameters
Setting to update inputs and - Checked: Inputs and out-
Enable I/0 update per task | outputs in the tasks in which | unmarked puts are updated by the tasks
they are used. in which they are used.

- Unchecked: Inputs and|
outputs are only updated by

MainTask
Enable retain and persis- | Setting that allows the use of - Marked: allows the use off
tent variables in Function | retentive and persistent vari- | unmarked retentive and persistent vari-|
Blocks ables in Function Blocks ables in Function Blocks.

- Unchecked: Exception er-
ror may occur at startup.

Table 44: CPU settings

Notes:
Generate error on tasks watchdog consistency: This parameter was discontinued as of MasterTool IEC XE version 1.32.
Enable I/0 update per task: This parameter was added as of MasterTool IEC XE version 2.01.

ATTENTION

When the initial address or the retentive or persistent data memory size are changed in the
user application, the memory is totally reallocated, what makes the retentive and persistent
variable area be clean. So the user has to be careful so as not to lose the saved data in the
memory.

ATTENTION

In situations where the symbolic persistent memory area is modified, a message will be
displayed by MasterTool IEC XE programmer, to choose the behavior for this area after
charging the modified program. The choice of this behavior does not affect the persistent
area of direct representation, which is always clean.

ATTENTION

The option Enable I/0 update per task is not supported for fieldbus masters such as NX5001
module. This feature is applicable only for input and output modules present on the con-
troller local bus (main rack and expansion racks).

ATTENTION

Even when an I/O point is used in other tasks, with the Enable I/O update per task marked, it
will continue to be updated in the MainTask as well; except when all the points of the module
are used in some other task, in this case they will not be updated on MainTask anymore.

5.2.1.1. Hot Swap

Nexto Series CPUs have the possibility of /O modules change in the bus with no need for system turn off and without
information loss. This feature is known as hot swap.

Nexto Series CPUs do not guarantee the persistent and retentive variables retentivity in case
the power supply or even the CPU is removed from the energized backplane rack.

63

Q
=
G

\

5. CONFIGURATION

On the hot swap, the related system behavior modifies itself following the configuration table defined by the user which
represents the options below:

= Disable, for declared modules only

= Disabled (with startup consistency)

= Disabled, without startup consistency

= Enabled, with startup consistency for declared modules only
= Enabled, with startup consistency

= Enabled, without startup consistency

Therefore, the user can choose the behavior that the system must assume in abnormal bus situations and when the CPU is
in Run Mode. The table below presents the possible abnormal bus situations.

Situation Possible causes

- Some module connected to the bus is different from the

P e et model that is declared in configuration.

- The module was removed from the bus.
- Some malfunctioning module is not responding to CPU
- Some bus position is malfunctioning.

Absent module

Table 45: Bus Abnormal Situations

For further information regarding the diagnostics correspondent to the above described situations, see Diagnostics via
Variables.

If a module is present in a specific position in which should not exist according to the configuration modules, this module
is considered as non-declared. The options of hot swap Disabled, for Declared Modules Only and Enabled, with Startup
Consistency for Declared Modules Only do not take into consideration the modules that are in this condition.

5.2.1.1.1. Hot Swap Disabled, for Declared Modules Only

In this configuration, the CPU is immediately in Stop Mode when an abnormal bus situation (as described on Table 45)
happens. The LED DG starts to blink 4x (according to Table 46). In this case, in order to make the CPU to return to the normal
state Run, in addition to undo what caused the abnormal situation, it is necessary to execute a Reset Warm or a Reset Cold. If a
Reset Origin is carried out, it will be necessary to perform the download so that the CPU can return to the normal state (Run).
The Reset Warm, Reset Cold and Reset Origin commands can be done by MasterTool IEC XE in the Online menu.

The CPU will remain in normal Run even if find a module not declared on the bus.

5.2.1.1.2. Hot Swap Disabled

This setting does not allow any abnormal situation in the bus (as shown in Table 45) modules including undeclared and
present on the bus. The CPU enters in Stop mode, and the DG LED begins to blink 4x (as in Table 46). For these cases, to
turn the CPU back to normal Run, in addition to undo what caused the abnormal situation it is necessary to perform a Reset
Warm or Reset Cold. If a Reset Origin is done, you need to download the project so that the CPU can return to normal Run.
The Reset Warm, Reset Cold and Reset Origin commands can be done by MasterTool IEC XE in the Online menu.

5.2.1.1.3. Hot Swap Disabled, without Startup Consistency

Allows the system to start up even when some module is in an abnormal bus situation (as shown in Table 45). Abnormal
situations are reported via diagnosis.

Any modification to the bus will cause the CPU to enter Stop Mode, and the DG LED will start blinking 2x (as in Table
46). In order for the CPU to return to the normal Run state in these cases, it is necessary to perform a Reset Warm or Reset
Cold. If a Reset Origin is performed, it will be necessary to download the CPU so that the CPU can return to the normal Run
state. The Reset Warm, Reset Cold and Reset Origin commands can be done by MasterTool IEC XE in the Online menu.

5. CONFIGURATION

5.2.1.1.4. Hot Swap Enabled, with Startup Consistency for Declared Modules Only

“Startup” is the interval between the CPU energization (or reset command or application download) until the first time
the CPU gets in Run Mode after been switched on. This configuration verifies if any abnormal bus situation has occurred (as
described on Table 45) during the start. In affirmative case, the CPU gets in Stop Mode and the LED DG starts to blink 4x
(according to Table 46). Afterwards, in order to set the CPU in Run mode, further to fix what caused the abnormal situation, it
is necessary to execute a Reset Warm or Reset Cold command, which can be done by the MasterTool IEC XE (Online menu).
If a Reset Origin is carried out, it will be necessary to perform the download so that the CPU can return to the normal state
(Run).

After the start, if any module present any situation described in the previous table, the system will continue to work
normally and will signalize the problem via diagnostics.

If there is no other abnormality for the declared modules, the CPU will go to the normal state (Run) even if a non-declared
module is present on the bus.

ATTENTION

In this configuration when a power fault occurs (even temporally), Reset Warm Com-
mand,Reset Cold Command or a new application Download has been executed, and if any
module is in an abnormal bus situation, the CPU will get into Sfop Mode and the LED DG
will start to blink 4x (according to Table 46). This is considered a startup situation.

This is the most advised option because guarantee the system integrity on its initialization
and allows the modules change with a working system.

5.2.1.1.5. Hot Swap Enabled with Startup Consistency

This setting checks whether there has been any abnormal situation in the bus (as shown in Table 45) during the startup,
even if there is no declared modules and present on the bus; if so, the CPU goes into Stop mode and the LED DG starts to blink
4x (as shown in Table 46). For these cases, to turn the CPU back to normal Run, in addition to undo what caused the abnormal
situation it is necessary to perform a Reset Warm or Reset Cold. If a Reset Origin is done, you need to download the project so
that the CPU can return to normal Run. The Reset Warm, Reset Cold and Reset Origin commands can be done by MasterTool
IEC XE in the Online menu.

5.2.1.1.6. Hot Swap Enabled without Startup Consistency

Allows the system to start working even if a module is in an abnormal bus situation (as described on Table 45). The
abnormal situations are reported via diagnostics during and after the startup.

This option is advised for the system implementation phase as it allows the loading of new
applications and the power off without the presence of all configured modules.

5.2.1.1.7. How to do the Hot Swap

Before performing the Hot Swap it is important to discharge any possible static energy ac-
cumulated in the body. To do that, touch (with bare hands) on any metallic grounded surface
before handling the modules. Such procedure guaranties that the module static energy limits
are not exceeded.

It is recommended the hot swapping diagnostics monitoring in the application control devel-
oped by the user in order to guarantee the value returned by the module is validated before
being used.

The hot swap proceeding is described below:

= Unlock the module from the backplane rack, using the safety lock.

65

Q
=
G

\

5. CONFIGURATION

= Take off the module, pulling firmly.
= Insert the new module in the backplane rack.
= Certify the safety lock is completely connected. If necessary, push the module harder towards to the backplane rack.

In case of output modules is convenient the points to be disconnected when in the changing process, in order to reduce the
generation of arcs in module connector. This must be done by switching off the power supply or by forcing the output points
using the software tools. If the load is small, there is no need for disconnecting.

It is important to note that in the cases the CPU gets in Stop Mode and the DG LED starts to blink 4x (according to Table
46, due to any abnormal bus situation (as described on Table 45, the output modules have its points operation according to the
module configuration when CPU toggles from Run Mode to Stop Mode. In case of application startup, when the CPU enters
Stop Mode without having passed to the Run Mode, the output modules put their points in failure secure mode, in other words,
turn it off (0 Vdc).

Regarding the input modules, if one module is removed from energized backplane rack, the logic point’s state will remain
in the last value. In the case a connector is removed, the logic point’s state will be put in a safe state, it means zero or high
impedance.

Always proceed to the substitution of one module at a time for the CPU to update the mod-
ules state.

Below, Table 46 presents the bus conditions and the Nexto CPU DG LED operation state. For further information regarding
the diagnostics LEDs states, see Diagnostics via LED section.

Enabled,
Enabled with Startup | Enabled, Disabled, Disabled,
ope . i Consistency | without . for declared | without
Condition WL for Declared | Startu Disabled modules Startu
Consistency . P c P
Modules Consistency only Consistency
Only
Non ~ de-| 1gp DG| LED DG| LED DG{ LED DG| LED DG| LED DG:
clared Blinks 2x Blinks 2x Blinks 2x Blinks 4x Blinks 2x Blinks 2x
module Application: Application: Application: Application: Application: Application:
Run Run Run Stop Run Stop
Non de-
clared LED DG LED DG: LED DG: LED DG: LED DG: LED DG:
module Blinks 4x Blinks 2x Blinks 2x Blinks 4x Blinks 2x Blinks 2x
(star?u.p Application: Application: Application: Application: Application: Application:
condition) Stop Run Run Stop Run Run
Absent LED DG LED DG: LED DG: LED DG:| LED DG: LED DG:
module Blinks 2x Blinks 2x Blinks 2x Blinks 4x Blinks 4x Blinks 2x
Application: Application: Application: Application: Application: Application:
Run Run Run Stop Stop Stop
Absent
module LED DG LED DG: LED DG: LED DG:| LED DG: LED DG:
(startup Blinks 4x Blinks 4x Blinks 2x Blinks 4x Blinks 4x Blinks 2x
condition) Application: | Application: | Application: | Application: | Application: | Application:
Stop Stop Run Stop Stop Run
Incompatible| 1Ep DG{ LED DG| LED DG{ LED DG| LED DG{ LED DG:
c.onﬁgura- Blinks 2x Blinks 2x Blinks 2x Blinks 4x Blinks 4x Blinks 2x
tion Application: | Application: | ~Application: | ~Application: | Application: [Application:
Run Run Run Stop Stop Stop
66

]
=
G

\

5. CONFIGURATION

Enabled,
with Startup | Enabled, Disabled, Disabled,
Enabled, . . .
. . Consistency | without . for declared | without
Condition with Startup Disabled
Consistenc for Declared | Startup modules Startup
Y| Modules Consistency only Consistency
Only
. LED DG:
Incompatible Blinks 2
configura- LED DG{ LED DG: n .S X LED DG;] LED DG LED DG:
tion(startup Blinks 4x Blinks 4x Application: [Blinks 4x Blinks 4x Blinks 2x
condition) Application: Application: Run Application: Application: Application:
Stop Stop or Stop Stop Run
LED DG:
Blinks 4x
Application:
Stop
Duplicated LED DG|y LED DG) LED DG| LED DG| LED DG| LED DG:
slot address Blinks 4x Blinks 4x Blinks 4x Blinks 4x Blinks 4x Blinks 2x
Application: | Application: | Application: | Application: | Application: | Application:
Stop Stop Stop Stop Stop Stop
Non- . LED DG|y LED DG] LED DG| LED DG| LED DG| LED DG:
operational Blinks 4x Blinks 4x Blinks 4x Blinks 4x Blinks 4x Blinks 2x
module Application: | Application: | Application: | Application: | Application: | Application:
Stop Stop Stop Stop Stop Stop
Table 46: Hot Swap and Conditions Relations
Note:

Enabled, without startup consistency: When this hot-swap mode is configured, in normal situations when there’s an
incompatible module on the system’s startup, the application will go from Stop to Run. However, if that module is configured
as a NX5000 or a NX5001 and there’s a different module in that position, the application will stay in Stop.

5.2.1.2. Retain and Persistent Memory Areas

The Nexto CPU allows the use of symbolic variables and output variables of direct representation as retentive or persistent
variables.

The output variables of direct representation which will be retentive or persistent must be declared in the CPU General
Parameters, as described at CPU Configuration. Symbolic names also can be attributed to these output variables of direct
representation using the AT directive, plus using the key word RETAIN or PERSISTENT on its declaration. For example,
being %QB4096 and %QB20480 within the retentive and persistent memory, respectively:

PROGRAM UserPrg

VAR RETATIN

byRetentiveVariable_01 AT %$QB4096 BYTE;
END_VAR

VAR PERSISTENT

byPersistentVariable_01 AT %$QB20480 BYTE;

END_VAR

In case the symbolic variables declared with the AT directive are not inside the respective retentive and/or persistent
memory, errors during the code generation in MasterTool can be presented, informing that there are non-retentive or non-
persistent variables defined in the retentive or persistent memory spaces.

Regarding the symbolic variables which will be retentive or persistent, only the retentive variables may be local or global,
as the persistent symbolic variables shall always be global. For the declaration of retentive symbolic variables, it must be used
the key word RETAIN. For example, for local variables:

67 altus

5. CONFIGURATION

PROGRAM UserPrg

VAR RETAIN
wLocalSymbolicRetentiveVariable_ 01 : WORD;

END_VAR

Or, for global variables, declared within a list of global variables:

VAR_GLOBAL RETAIN
wGlobalSymbolicRetentiveVariable_ 01 : WORD;
END_VAR

On the other hand, the persistent symbolic variables shall be declared in a Persistent Variables object, being added to the
application. These variables will be global and will be declared in the following way within the object:

VAR_GLOBAL PERSISTENT RETAIN
wGlobalSymbolicPersistentVariable 01 : WORD;
END_VAR

As of versions 1.5.1.1 the Nexto Series CPUs allow flexibility on the usage of retentive and persistent memories. This
means that the user will be able to choose the size that will be used for each type of memory, as long as the retentive and
persistent memory sum don’t exceed the total limit available in each CPU model. The total of retentive and persistent memory
available is described in the Table 7 in Memory.

If the retentive symbolic, persistent symbolic, retentive %Q and persistent %Q memory sum exceed the total available,
MasterTool will show an error during the code generation.

VAR_GLOBAL PERSISTENT RETAIN
wGlobalSymbolicPersistentVariable 01 : WORD;
END_VAR

VAR_GLOBAL RETAIN
wGlobalSymbolicRetentiveVariable_01 : WORD;
END_VAR

To use the retentive and persistent memory flexibly, it’s necessary to use MasterTool IEC XE
2.03 or higher.

68

\

Q
=
G

5. CONFIGURATION

5.2.1.3. Project Parameters

The CPU project parameters are related to the configuration for input/output refreshing at the task that they are used of the
project tasks and the options for reading and writing on the memory card.

Configuration Description Default Options
Updates the input and output
Enable I/0 update per task | in the tasks where they are | Unmarked - Marked
used - Unmarked
Enable retain and persis- | Setting to allow the use of
tent variables in Function | retentive and persistent vari- | Unmarked - Marked
Blocks ables in function blocks - Unmarked
Memory Card
Copy Project from CPU to | COPY the project from the | - Enabled: Configuration en-
CPU internal memory to the | Disabled abled
Memory Card d
memory car - Disabled: Configuration|
disabled
Password to Copy Project | Password for coping the o
from CPU to Memory | project from the CPU inter- - 6 digits password (0 to
Card nal memory to memory card 999999)
Copy Project from Mem- Copy the project from t'he ' - Enabled: Configuration en-
ory Card to CPU memfry card to the CPU in- | Disabled abled
ternal memory - Disabled: Configuration
disabled
Password to Copy Project Pas§word for: coping the
from Memory Card to project from the memory - 6 digits password (0 to
CPU card to the CPU internal 999999)
memory

Table 47: CPU Project Parameters

After setting the project copy possibilities and having created the boot application, it must
be found the “Application.crc” file in order the configurations concerning the memory card
have effect. The search can be done at Select the Application.crc through the Find File... key,
as can be seen on Figure 131.

5.2.2. External Event Configuration

The external event is a feature available in the CPU which enables a digital input, configured by the user, when activated,
triggers the execution of a specific task with user-defined code. Thus, it is possible that through this input, when triggered,
interrupt the execution of the main application and run the set application in the task ExterninterruptTask00, which has higher
priority than other application tasks. Because the inputs and outputs are updated in the context of the MainTask task, the
External Event task does not have the input and output data updated at the time of its call. If necessary, use the I/O update
functions.

It is also important to note that, to avoid the generation of several events in a very short space of time, that was limited
the treatment of this type of event in every 10 ms, i.e., if two or more events occurs during 10 ms after the first event, the
second and subsequent events are discarded. This limitation is imposed to prevent an external event that is generated in an
uncontrolled way, do not block the CPU, since the task has a higher priority over the others.

To configure an external event is necessary to insert a digital input module and perform the configurations described below,
in the CPU, through the MT8500 programming tool software.

69

]
=
G

\

5. CONFIGURATION

Configuration (Bus) m NX3010 X

General Parameters Select Bus Event
Module Address:Mame
Bus Event Configuration [Rggsgq:mmgl v]

Synchronism Bus Event Mapping
I0_EVT 0
[10 Rising Edge -

I0_EVT_1

[No Event Source v]

I0_EVT_2

[No Event Source v]

I0_EVT_3
[No Event Source v]

I0_EVT_4
’No Event Source v]

I0_EVT_5

[No Event Source v]

I0_EVT 6

[No Event Source v]

10_EVT_7

’No Event Source v]

Figure 44: Configuration Screen for External Event in CPU

In the configuration external event tab, within the CPU settings, it is necessary to select which module will be the interrup-
tion source, in the field Module Address: Name. Then it must be selected which input of this module will be responsible for
the event generation (/O_EVT_0). In this selection the options described in the figure below can be chosen.

Bus Event Mapping
I0_EVT_ D
|10 Rising Edge -

Mo Event Source
10 Rising Edge
10 Falling Edge
11 Rising Edge
11 Falling Edge
12 Falling Edge
15 Rising Edge
15 Falling Edge
16 Rising Edge
16 Falling Edge
112 Rising Edge
112 Falling Edge

Figure 45: NX1001 Module External Event Source Options

In addition to configuring the CPU it is required to configure the task responsible for executing user-defined actions. In
this case the user must use a project profile that supports external events. For further information see the section Project
Profiles. In the configuration screen of the ExternlnterruptTask00 (figure below), it is necessary to select the event source in
the corresponding field. In this case, IO_EVT_0 should be selected since the other origin sources (IO_EVT_I to IO_EVT_7)
are not available. In the sequence, the field POU should be checked if the right POU is selected, because it will be used by the
user to define the actions to be performed when an external event occurs.

70

Q
=
G

\

5. CONFIGURATION

Configuration (Bus) @ ExternInterruptTask00 X -

Configuration

Priority { 0..31 J: 2

Type

External External event: |I0_EVT_0 i

Watchdog
Enable

Time {e.q. t#200ms): 10 N

Sensitivity: 1

gk Add Call % Remove Call [& Change Call Mave Up Move Down | *= Open POU

PoU Comment
ExternInterruptPrgl0

Figure 46: ExternInterruptTaskO0 Configuration Screen

5.2.3. SOE Configuration

The SOE (Sequence of Events) is responsible for the generation of a sequence of digital events. Through the SOE it is
possible to analyze the historic behavior of the system variables mapped in its monitoring area. The SOE is an exclusive
service available for the NX3020 and NX3030 models.

Once the SOE service has been enabled, the CPU starts to behave as a DNP3 server, thus it is necessary the support to
the DNP3 protocol by the client for the use of this resource. The supported object types as well as the function codes and the
qualifiers can be found at Annex. DNP3 Interoperability.

The SOE service uses the %Q addresses in order to form its base of static data. For it, it has to be set a continuous area of
%Q memory where the user will inform its beginning and size. For redundant projects the %Q area also has to be redundant
so that in the switchover moment the DNP3 server data base is kept.

The DNP3 first object address will always be 0, corresponding to %QBxxxx’s bit 0, where xxxx is the %Q initial address.

Thus, once defined the static data base, the user must copy each digital point which should generate events within the %Q
continuous area. The maximum number of points which can be copied is 8000.

For the events configuration, it is necessary to inform only the size of the events queue. The SOE uses a special and
dedicated queue (not the one described on Protocols Configuration section), which is persistent and redundant, so the events
will not be lost in the switchover moment neither in case of a power supply failure. In case an overflow occurs in the events
queue, the oldest events will be overwritten. In case in one single cycle are generated more events than what is supported by
the queue, its generation is interrupted and the overflow diagnostic is turned on (SOE[x].bOverflowStatus). For example, if
100+n bits vary in a 100 events configuration, causing a dispose of n events.

The SOE will run in the MainTask context, starting already at the first cycle. The SOE will run at the end of each MainTask
cycle, comparing the mapped bits in order to detect transitions occurred in the cycle. In this way, every cycle in which the events
are generated, an increase of time in this cycle of the MainTask will occur. In the worst case (1000 events, being generated
only 1000 and discarded the remaining ones), this influence will be approximately of 5 ms. Therefore, for an application with
the SOE enabled, the user will have to take into account this time when setting the parameters of watchdog time and interval
of the MainTask.

For the use of it the user must set the following parameters in the SOE Configuration tab:

71

]
=
G

\

5. CONFIGURATION

Configuration (Bus)

General Parameters

Bus Event Caonfiguration

Synchronism

Internal Points

SOE Configuration

[f] mz030 x

General Configuration
SOE Service

| Enabled

Ethernet Interface

|NEI'.1

Keep Alive Interval (ms)
10000

Events Queue Size
1000

Communication Points
Offzet of 30 Start Address
20480

Size of Area %0
1000

Client Configuration
Mumber of Clients
2

TCP Port for Client 1
20000

TCP Port for Client 2
20001

Advanced. ..

Figure 47: Events Sequence Configuration

Py

Used range: %0B20480.. %0B22479

Configuration Description Default Value | Options
General Configuration
SOE Service Enables the SOE Disabled Enabled
Disabled
Ethernet Interface Selects the used interface NET 1 NET 1
NET 2
. Keep alive (ms) interval
Keep Alive Interval (ms) 10000 0 to 4294967295
messages
Events Queue Size Events queue size 1000 100 to 1000

Communication Points

Bitels @it 0] Bl sk Initial address for static data | 20480 Any %Q area address can be
dress used
. Memory size to be used by
Size of Area %Q the static data (%Q) 1000 1 to 1000
Client Configuration
Number of Clients Dfaﬁnes the number of 2 1,2
clients
. Selects the communication
TCP Port for Client 1 . 20000 1 to 65535
port for the first client
TCP Port for Client 2 Selects the communication |, I to 65535

port for the second client

Table 48: SOE Configuration

72

5. CONFIGURATION

Notes:

Data Memory Size: The data memory size reserved to be used by the static data will always be twice the value set as the
second half of the memory area is used to store the previous variables values of the first half.

Keep Alive: While it is connected to a client, keep alive messages will be sent in intervals according to what has been set.
If the client does not respond to these messages, the connection is closed. That is, a connection between client and server may
take a time equal to the interval set to be closed in case of error.

In the advanced options (Advanced... key) it is possible to set the communication addresses regarding to the DNP3 protocol.

. . . Default .
Configuration Description Value Options
DNP3 Source Address Origin Address (PLC) 4 0 to 65519
DNP3 Destination Address | ;. of the first client 3 0to 65519
of Client 1
DNP? GG AL TS Address of the second client 3 0 to 65519
of Client 2

Table 49: SOE Advanced Configurations

Note:

DNP3 Address: The DNP3 addresses from the range 65520 to 65535 cannot be set at the origin or at a destiny as they are
used for messages in broadcast.

The DNP3 Data Link messages are not used by the Nexto Series CPUs as the standard does
not recommend its use them in TCP/IP communications.

5.2.4. Time Synchronization

For the time synchronization, Nexto Series CPUs use the SNTP (Simple Network Time Protocol) or the synchronism
through IEC 60870-5-104.

To use the time sync protocols, the user must set the following parameters at Synchronism tab, accessed through the CPU,
in the device tree:

Configuration {Bus) [mwE30 x
General Parameters General Configuration
Time Zone E HE 1]

Bus Event Configuration
SNTP Configuration

Synchronism |:| SNTP Service

Internal Points

100
SQOE Configuration
192 . 168 . 15 10

192 . 168 . 15 11

Figure 48: SNTP Configuration

73

\

Q
=
G

5. CONFIGURATION

Configuration Description Default Options
Time zone of the user loca-
Time Zone (hh:mm) tion. Hours and minutes can -3:00 12:59 to +13:59
be inserted.
SNTP Service Enables the SNTP service. Disabled Disabled
Enabled
Period for SNTP Synchro- Time . 1nt§rval of the syn-
.. chronization requests (sec- 60 1 to 255
nization (x1 s)
onds).
. . Offset value acceptable be-
LI o tween the server and client 100 1 to 65519

Clock Update (x1 ms)

(milliseconds).

IP Address of First SNTP
Server

IP Address of the primary
SNTP server.

192.168.15.10

1.0.0.1 to 223.255.255.254

IP Address of Second Sec-
ond SNTP Server

IP Address of the secondary
SNTP server.

192.168.15.11

1.0.0.1 to 223.255.255.254

Table 50: SNTP Configurations

Notes:

SNTP Server: It is possible to define a preferential address and another secondary one in order to access a SNTP server
and, therefore, to obtain a synchronism of time. If both fields are empty, the SNTP service will remain disabled.

Time zone: The time zone configuration is used to convert the local time into UTC and vice versa. While some sync
sources use the local time (IEC 60870-5-104 protocol, SetDateAndTime Function), others use the UTC time (SNTP). The
UTC time is usually used to stamp events (DNP3, IEC 60870-5-104 and MasterTool Device Log), while the local time is used
by an others CPU’s features (GetDateAndTime function, OTD date and time info).

It is allowed to enable more than one sync source on the project, however the device doesn’t supports the synchronism from
more than one sync source during operation. Therefore there are implicitly defined a priority mechanism. The synchronism
through SNTP is more prioritary than through IEC 60870-5-104 protocol. So, when both sources are enabled and SNTP server
is present, it is going to be responsible for the CPU’s clock sync, and any sync command from IEC 60870-5-104 is going to be
denied.

5.24.1. IEC 60870-5-104

In case the synchronism is through IEC 60870-5-104 protocol, the user must enable the time sync at the protocol con-
figuration screen to receive the clock synchronization. To set this option on the device, check the parameter Enable Time
Synchronization available at the Application Layer section.

If the PLC receives a time sync command from the control center, and this option is disabled,
an error answer will be returned to that command. But if this option is enabled then a success
message will be returned to the control center, even that the sync command be discarded for
there is another synchronism method active with higher priority.

This synchronism method should be used only as an auxiliary synchronism method, once the precision of the clock sync
process depends a lot on delays and traffic on the network, as well as the processor load on the CPU, as this mechanism is
treated by a low priority task.

In redundant PLCs architectures, the IEC 60870-5-104 Server driver is disabled on non-
active PLC. This way, isn’t recommended the use of this synchronism method in redundant
systems. Because the non-active PLC might take several seconds after the switchover until
its clock is synchronized. To redundant systems it is recommended the use of SNTP.

74

Q
=
G

\

5. CONFIGURATION

5.2.4.2. SNTP

When enabled, the CPU will behave as a SNTP client, which is, it will send requests of time synchronization to a SNT-
P/NTP server which can be in the local net or in the internet. SNTP client works with a resolution of 1 ms, but with an
accuracy of 100 ms. The precision of the time sync through SNTP depends on the protocol configurations (minimum error to
clock update) and the features of the Ethernet network where it is, if both client and server are in the same network (local) or
in different networks (remote). Typically the precision is in tens of milliseconds order.

The CPU sends the cyclic synchronization requests according to the time set in the Period for SNTP Synchronization field.
In the first synchronization attempt, just after the service start up, the request is for the first server set in the first server IP
address. In case it does not respond, the requests are directed to the second server set in the second server IP address providing
a redundancy of SNTP servers. In case the second server does not respond either, the same process of synchronization attempt
is performed again but only after the Period of Synchronization having been passed. In other words, at every synchronization
period the CPU tries to connect once in each server, it tries the second server in case the first one does not respond. The waiting
time for a response from the SNTP server is defined by default in 5 s and it cannot be modified.

If, after a synchronization, the difference between the current time of the CPU and the one received by the server is higher
than the value set in the Minimum Error Before Clock Update parameter, the CPU time is updated. SNTP uses the time in the
UTC (Universal Time Coordinated) format, so the Time Zone parameter needs to be set correctly so the time read by the SNTP
will be properly converted to a local time.

The execution process of the SNTP client can be exemplified with the following steps:

1. Attempt of synchronization through the first server. In case the synchronization occurs successfully, the CPU waits the
time for a new synchronization (Period for SNTP Synchronization) and will synchronize again with this server, using it
as a primary server. In case of failure (the server does not respond in less than 5 s) step 2 is performed.

2. Attempt of synchronization through the second server. In case the synchronization occurs successfully, the CPU waits
the time for a new synchronization (Period for SNTP Synchronization) and will try to synchronize with this server using
the primary server. In case of failure (the server does not respond in less than 5 s) the time relative to the Synchronization
Period is waited and step 1 is performed again.

As the waiting time for the response of the SNTP server is 5 s, the user must pay attention to lower than 10 s values for the
Synchronization Period. In case the primary server does not respond, the time for the synchronization will be the minimum
of 5 s (waiting for the primary server response and the synchronization attempt with secondary server). In case neither the
primary server nor the secondary one responds, the synchronization time will be 10 s minimum (waiting for the two servers
response and the new connection with first server attempt).

Depending on the SNTP server’s subnet, the client will use the Ethernet interface that is in the corresponding subnet to
make the synchronization requests. If there is no interface configured on the same subnet as the server, the request can be made
by any interface that can find a route to the server.

The SNTP Service depends on the user application only for its configuration. Therefore, this
service will be executed even when the CPU is in STOP or BREAKPOINT modes, as long
as there is an application in the CPU with the SNTP client enabled and correctly configured.

It is vital to setup at least one SNTP server. It is recommended to configure two SNTP
servers (primary and secondary). SNTP synchronism is necessary to generate events with a
coherent time stamp between the CPA and CPB and with the world time. Another usefulness
is to avoid discontinuities during a switchover in applications that reference date and time,
considering that there is no synchronization of date and time between the PLCs through the
NETA and NETB synchronism channels.

5.2.4.3. Daylight Saving Time (DST)

The DST configuration must be done indirectly through the function SetTimeZone, which changes the time zone applied to
the RTC. In the beginning of the DST, it has to be used a function to increase the time zone in one hour. At the end of the DST,
it is used to decrease it in one hour.

For further information, see the section RTC Clock.

75

Q
=
G

\

5. CONFIGURATION

5.2.5. Internal Points

A communication point is storage on the CPU memory under form of two distinct variables. One represents the point’s
value (type BOOL, BYTE, WORD, etc...), while another, represents its quality (type QUALITY). Internal Points are those
which the value and the quality are calculated internally by the user application, that is, they don’t have an external origin like
occur with points linked to IEDs (Communication drivers of type Master/Client) or to local I/O modules.

ATTENTION

Different from what happen with I/O modules declared on local bus, which have its own
quality variables created by MasterTool (IOQualities GVL) and auto updated by the CPU,
I/0O modules declared on PROFIBUS remotes don’t have.

It is user responsibility to declare PROFIBUS point’s quality variables, the association of
these quality variables with the value variables at Internal Points tab, as well as genera-
tion and update of the quality variables value, from the existents PROFIBUS diagnostics:
PROFIBUS I/0O modules, PROFIBUS head and PROFIBUS Master.

7

This Internal Points configuration tab’s function is to relate the variable which represents a point’s value with the one
which represents its quality. It must be used to relate value and quality variables internally created on the PLC program (as in
a GVL), which ones typically will be posteriorly mapped to a communication driver, of type Server, for communication with
the control center.

If a value variable doesn’t own a related quality variable, it will be reported as default a
constant good quality (no significant indication) when the value variable is reported to a
client or control center.

In this way, this tab purpose isn’t to create or declare internal points. To do that, just declare value and/or quality variables
in a GVL and map it on the communication driver.

The internal points configuration, viewed on the figure below, follow the parameters described on table below. It’s possible
to configure up to 5120 entries on Internal Points table.

Configuration {Bus) [mwE30 x

General Parameters Variable Name Quality

Bus Event Configuration

Synchronism

Internal Points

SQOE Configuration

Figure 49: Internal Points Configuration Screen

76

Q
=
G

\

5. CONFIGURATION

Configuration Description Default Options

Accept variables of type
BOOL, WORD, DWORD,
LWORD, INT, DINT, LINT,
Variable Name Symbol variable which stor- i UINT, UDINT, ULINT,
age the internal point value REAL, LREAL or DBP.
The variable can be simple,
array or array’s element and

can be part of a struct.

QUALITY type variables

. Symbol variable which stor- (L1bRtuSta.ndard), which
Quality age the internal point qualit i can be simple, array - or
& p d Y array’s element and can be

part of a struct.

Table 51: Internal Points Configuration

The figure below show an example of two internal points configuration:

Configuration (Bus) m NX3030 X
General Parameters Variable Name Quality
VarValue qVarQuality
Bus Event Configuration 3 UserPrg.bVarValue |UserPrg.qVarQuality
. .
Synchronism
Internal Points 1EC104 @
= 1 VAR GLOBAL -
SOE Configuration i iVarValue : INT; L D
3 gVarfuality : QUALITY; |~
4 END VAR
- nn B -
< 1 b
UserPrg @
1 PROGRAM UserPrg -
- 2 VAR I:I
E EVarvalue : BOOL; E
4 gVarfuality : QUALITY;
5 END VAR o @ -
] m b
.

Figure 50: Internal Points Configuration Example

5.2.5.1. Quality Conversions

The internal point’s quality is a trust level information about the value stored on that point. The quality may inform, for
example, that the value stored is out of range, or yet that it is valid, but low trusted.

The Standards IEC 61850, DNP3 and IEC104 have their own formats to representation of point’s quality information. The
Nexto Series, by its turn, have its own quality format (but quite similar to IEC 61850) called Internal Quality. This format is
defined by type QUALITY (library LibRtuStandard) and it is used internally to quality storage, allowing to be done conversion
between protocols without information loss.

When it is done a mapping of a same communication point between two drivers, the quality conversion is automatically
realized in two steps. For example: in case a communication point is mapped from a DNP3 Client driver to a IEC104 Server
driver, first the quality will be converted from DNP3 format to internal format (and stored internally in the CPU), after that it
will be converted from the internal format to IEC104 format.

The following tables define the protocols own formats conversion to internal format. Case it is necessary to consult the
conversion between protocols, it is needed to analyze in two steps, looking each of the tables to internal format and after
correlating them.

77 altus

—_——

5. CONFIGURATION

52511

ATTENTION

In case of internal points mapped to communication drivers, it is not recommended to modify
the value of quality flags that dont have a correspondent on the given protocol (i.e, flags that
are not described on the following tables). This will result on generation of events equal
to the previous one (but with a more recent timestamp) and, this way, depending on the
configuration selected for the transmission mode of analog inputs events, it could overwrite
the previous event if this one was not delivered to the control center yet.

Internal Quality

This is the QUALITY structure. The table shows detailed each of its components.

Bit

Name

Type

Description

FLAG_RESTART

BOOL

The RESTART flag indicates that the data
haven’t been updated by the field since the
device’s reset.

FLAG_COMM_FAIL

BOOL

Indicates there is a communication failure
on the way between the data origin device
and the reports device.

FLAG_REMOTE_SUBSTITUTED

BOOL

If TRUE the data values are overwritten in
the remote communication devices.

FLAG_LOCAL_SUBSTITUTED

BOOL

If TRUE the data value is overwritten by
the device which generated this flag. This
behavior might occur due to a working in
diagnostic or temporary due to human in-
tervention.

FLAG_FILTER

BOOL

Flag used to signalize and prevent the event
communication channel overload, as oscil-
lations (rapid changes) on the digital in-
puts.

FLAG_OVERFLOW

BOOL

This flag should indicates a quality prob-
lem, that the value, of the attribute to which
the quality has been associated, is beyond
representation.

FLAG_REFERENCE_ERROR

BOOL

This flag should identify that the value can-
not be correct due to out of calibration ref-
erence.

FLAG_INCONSISTENT

BOOL

This flag should identify that an evaluation
function has found an inconsistency.

FLAG_OUT_OF_RANGE

BOOL

This flag should indicates a quality prob-
lem that the attribute to which the quality
has been associated is beyond the prede-
fined values capacity.

FLAG_INACCURATE

BOOL

This flag should indicates that the value
doesn’t attend the declared precision of the
source.

10

FLAG_OLD_DATA

BOOL

A value seems to be outdated. In case an
update doesn’t occur during a specific time
period.

11

FLAG_FAILURE

BOOL

This flag should indicates that a watch
function detected an internal or external
failure.

12

FLAG_OPERATOR_BLOCKED

BOOL

Update blocked by operator.

78

]
=
G

\

5. CONFIGURATION

Bit

Name

Type Description

13

FLAG_TEST

BOOL

tional ends.

This must be an additional identifier which
can be used to classify a value being that
a test value which won’t be used to opera-

14-15

RESERVED

Reserved

16-17

VALIDITY

QUALITY_VALIDITY

value)

0 — Good (Trustfull value, means that
there is no abnormal conditions)
1 —Invalid (Value doesn’t match the IED’s

2 — Reserved (Reserved)
3 — Questionable (Present value might be
not the same from the IED)

5.2.5.1.2.

Table 52: QUALITY Structure

IEC 60870-5-104 Conversion

The tables below presents the digital, analog, Step Position, Bitstring and counters internal point’s conversion to IEC

60870-5-104 of Nexto Series available to MT8500.

Internal Points -> IEC 60870-5-104 Digital

Internal Quality
Flags VALIDITY IEC 60870-5-104 Quality
FLAG_RESTART ANY NOT TOPICAL
FLAG_COMM_FAIL ANY NOT TOPICAL
FLAG_REMOTE_SUBSTITUTED ANY SUBSTITUTED
FLAG_LOCAL_SUBSTITUTED ANY SUBSTITUTED
FLAG_FILTER ANY -
FLAG_OVERFLOW ANY -
FLAG_REFERENCE_ERROR ANY -
FLAG_INCONSISTENT ANY -
FLAG_OUT_OF_RANGE ANY -
FLAG_INACCURATE ANY -
FLAG_OLD_DATA ANY NOT TOPICAL
FLAG_FAILURE ANY INVALID
FLAG_OPERATOR_BLOCKED ANY BLOCKED
FLAG_TEST ANY -
ANY VALIDITY_INVALID | INVALID

Table 53: Digital Points Conversion Internal to IEC 60870-5-104

79

altus

5. CONFIGURATION

5.2.5.1.3.

Internal Points -> IEC 60870-5-104 Analog, Step Position and Bitstring

Internal Quality
Flags VALIDITY IEC 60870-5-104 Quality
FLAG_RESTART ANY NOT TOPICAL
FLAG_COMM_FAIL ANY NOT TOPICAL
FLAG_REMOTE_SUBSTITUTED ANY SUBSTITUTED
FLAG_LOCAL_SUBSTITUTED ANY SUBSTITUTED
FLAG_FILTER ANY -
FLAG_OVERFLOW ANY OVERFLOW
FLAG_REFERENCE_ERROR ANY INVALID
FLAG_INCONSISTENT ANY INVALID
FLAG_OUT_OF_RANGE ANY OVERFLOW
FLAG_INACCURATE ANY INVALID
FLAG_OLD_DATA ANY NOT TOPICAL
FLAG_FAILURE ANY INVALID
FLAG_OPERATOR_BLOCKED ANY BLOCKED
FLAG_TEST ANY -
ANY VALIDITY_INVALID | INVALID

Table 54: Analog, Step Position and Bitstring Points Conversion Internal to IEC 60870-5-104

Internal Points -> IEC 60870-5-104 Counters

Internal Quality
Flags VALIDITY IEC 60870-5-104 Quality
FLAG_RESTART ANY -
FLAG_COMM_FAIL ANY -
FLAG_REMOTE_SUBSTITUTED ANY -
FLAG_LOCAL_SUBSTITUTED ANY -
FLAG_FILTER ANY -
FLAG_OVERFLOW ANY OVERFLOW
FLAG_REFERENCE_ERROR ANY -
FLAG_INCONSISTENT ANY -
FLAG_OUT_OF_RANGE ANY -
FLAG_INACCURATE ANY -
FLAG_OLD_DATA ANY -
FLAG_FAILURE ANY INVALID
FLAG_OPERATOR_BLOCKED ANY -
FLAG_TEST ANY -
ANY VALIDITY_INVALID | INVALID

Table 55: Counters Conversion Internal to IEC 60870-5-104

MODBUS Internal Quality

As the MODBUS standard don’t specify quality types to each point, but for help on use of each point’s communication
diagnostic, MasterTool allows the quality variables mapping, through an internal own structure, to each MODBUS point. The
table below describes the quality types that each MODBUS point can assume.

80

altus

5. CONFIGURATION

5.2.5.14.

Resulting Quality

Resulting VALIDITY

Description

FLAG_RESTART

VALIDITY_INVALID

Initial value. The point was
never updated.

VALIDITY_GOOD

Communication OK. The
point is updated.

FLAG_COMM_FAIL AND
FLAG_RESTART

VALIDITY_INVALID

Communication error. The
point never was updated.

FLAG_COMM_FAIL AND
FLAG_OLD_DATA

VALIDITY_QUESTIONABLE

An error has occurred but
the point was updated and
now has an old value.

It has received an exception

FLAG_OLD_DATA

FLAG_FAILURE AND .
FLAG_RESTART VALIDITY_INVALID response and the point kept
its initial value.
It has received an exception
FLAG_FAILURE AND .
FLAG._OLD_DATA VALIDITY_QUESTIONABLE response, but the point has a
valid old value.
FLAG_RESTART AND Device stopped. The point

VALIDITY_QUESTIONABLE

has an old value.

Local Bus I/O Modules Quality

Table 56: MODBUS Quality

To help in the use of each I/O point’s diagnostic, MasterTool automatically creates a quality structure to each local bus
module used on the PLC project, through an own internal structure accessible by structure QUALITY, available in GVL
10Qualities.

The table below describes the quality types to each input and output point.
For further information look at GVL IOQualities.

FLAG_FAILURE

Diagnostics Resulting Quality Resulting VALIDITY Description
The quality has this value be-
Don’t care FLAG_RESTART VALIDITY_INVALID fore have been read or written
for the first time.
None . VALIDITY GOOD Communication OK. The point
is updated.
Non-operational module. How-
None FLAG_OLD_DATA AND VALIDITY_QUESTIONABLE | ever, the data have been read or

written at least once.

bOverRange OR bUnder-
Range

FLAG_OUT_OF_RANGE

VALIDITY_INVALID

The value is above or below the
module’s input allowed range.

bInputNotEnable OR bOut-
putNotEnable

FLAG_OPERATOR_BLOCKED

VALIDITY_INVALID

Input/Output not enable.

bOpenLoop

FLAG_FAILURE

VALIDITY_INVALID

Open loop in input module.

bFatalError

FLAG_FAILURE

VALIDITY_INVALID

Hardware fatal failure.

bNoExternalSupply

FLAG_FAILURE

VALIDITY_INVALID

External power supply is under
operational minimum limit.

bShortCircuit OR bOutput-
ShortCircuit

FLAG_FAILURE

VALIDITY_INVALID

Output short-circuit.

bCalibrationError

FLAG_INACCURATE

VALIDITY_INVALID

Calibration error.

bColdJunctionSensorError

FLAG_INACCURATE

VALIDITY_INVALID

Cold junction sensor error.

Table 57: /O Modules Quality

5.2.5.1.5. PROFIBUS I/O Modules Quality

Different from local bus, MasterTool doesn’t automatically create the PROFIBUS modules quality structures, and neither
the PLC update such structures. Therefore the creation and cyclic update of PROFIBUS modules quality is user responsibility.

81

altus

5. CONFIGURATION

To help on the development of such applications, there are following practical examples, in ST language, for the main
PROFIBUS modules (DI, DO, Al, AO), based on Nexto Serie’s PROFIBUS slaves (NX5110). The user should feel encouraged
to make any needed adaptation and change to fit to its application.

For the routines, presented in sequence, correct functioning it is necessary to enable Starus
in Diagnose in the PROFIBUS slaves.

The development of PROFIBUS I/O modules quality points update routine must began from quality variables declaration
and initialization, from a GVL:

VAR_GLOBAL

QUALITY_PB_NX1005_I: LibDataTypes.QUALITY:= (VALIDITY:= VALIDITY_ INVALID,
FLAGS:= (FLAG_RESTART:= TRUE)) ;
QUALITY_PB_NX1005_0O: LibDataTypes.QUALITY:= (VALIDITY:= VALIDITY_ INVALID,
FLAGS:= (FLAG_RESTART:= TRUE)) ;
QUALITY_PB_NX6000: LibDataTypes.QUALITY:= (VALIDITY:= VALIDITY_ INVALID,
FLAGS:= (FLAG_RESTART:= TRUE)) ;
QUALITY_PB_NX6100: LibDataTypes.QUALITY:= (VALIDITY:= VALIDITY INVALID,
FLAGS:= (FLAG_RESTART:= TRUE));

END_VAR

5.2.5.1.6. PROFIBUS Digital Inputs Quality

// PROFIBUS digital input quality update, module NX1005

// In communication success case with PROFIBUS slave (address = 99)
IF DG_NX5001.tMstStatus.abySlv_State.bSlave_99 = TRUE THEN

// Waits the PROFIBUS slave become apt to exchange data and diagnostics

// (It is necessary to wait, avoiding invalid quality generation)

IF DG_NX5110.tPbusHeadA.tStatusl.bStation Non_ Existent = FALSE AND
DG_NX5110.tPbusHeadA.tStatusl.bStation_Not_Ready = FALSE AND
DG_NX5110.tPbusHeadA.wIdentNumber > 0 THEN
QUALITY_PB_NX1005_I.FLAGS.FLAG_COMM_FAIL:= FALSE;

// If there is a module present on the bus (slot = 2) and

// if there is no modules config problem (general) and

// 1f there is no config problem in that module (specific) and

// if there is no fatal error identification by the module

IF (DG_NX5110.tPbusHeadA.dwModuleNotPresent AND SHL (1, 2)) = 0 AND
DG_NX5110.tPbusHeadA.tSummarized.bConfigMismatch = FALSE AND
DG_NX1005_24_vVdc_8_DO_Trans_8_DI.tGeneral.bConfigMismatch = FALSE AND
DG_NX1005_24 Vdc_8 DO_Trans_8_DI.tGeneral.bFatalError = FALSE THEN
QUALITY_ PB_NX1005_I.VALIDITY:= VALIDITY_ GOOD;
QUALITY_PB_NX1005_I.FLAGS.FLAG_RESTART:= FALSE;
QUALITY_PB_NX1005_I.FLAGS.FLAG_FAILURE:= FALSE;
QUALITY_PB_NX1005_I.FLAGS.FLAG_OLD_DATA:= FALSE;

ELSE
QUALITY_PB_NX1005_I.VALIDITY:= VALIDITY_ INVALID;
QUALITY_PB_NX1005_I.FLAGS.FLAG_FAILURE:= TRUE;
// If the point have ever been updated once
IF NOT QUALITY_PB_NX1005_I.FLAGS.FLAG_RESTART THEN

QUALITY_PB_NX1005_I.FLAGS.FLAG_OLD_DATA:= TRUE;

END_TIF

82

\

Q
=
G

5. CONFIGURATION

END_TF
END_TIF
// In PROFIBUS communication failure with the PROFIBUS slave
ELSE
QUALITY_PB_NX1005_I.VALIDITY:= VALIDITY_ INVALID;
QUALITY_PB_NX1005_I.FLAGS.FLAG_COMM_FAIL:= TRUE;
QUALITY_PB_NX1005_I.FLAGS.FLAG_FAILURE:= FALSE;
// If the point have ever been updated once
IF NOT QUALITY_PB _NX1005_TI.FLAGS.FLAG_RESTART THEN
QUALITY_ PB_NX1005_I.FLAGS.FLAG_OLD_DATA:= TRUE;
END_TF
END_TF

5.2.5.1.7. PROFIBUS Digital Output Quality

// PROFIBUS digital output quality update, module NX1005

// In communication success case with PROFIBUS slave (address = 99)

IF DG_NX5001.tMstStatus.abySlv_State.bSlave_99 = TRUE THEN

// Waits the PROFIBUS slave become apt to exchange data and diagnostics

// (It is necessary to wait, avoiding invalid quality generation)

IF DG_NX5110.tPbusHeadA.tStatusl.bStation Non_Existent = FALSE AND
DG_NX5110.tPbusHeadA.tStatusl.bStation_Not_Ready = FALSE AND
DG_NX5110.tPbusHeadA.wIdentNumber > 0 THEN

QUALITY_PB_NX1005_O.FLAGS.FLAG_COMM_FAIL:= FALSE;

// If there is a module present on the bus (slot = 2) and

// 1f there is no modules config problem (general) and

// if there is no config problem in that module (specific) and

// if there is no fatal error identification by the module and

// if there is no outputs short circuit indication and

// if there i1s no external power supply missing indication ...

IF (DG_NX5110.tPbusHeadA.dwModuleNotPresent AND SHL (1, 2)) = 0 AND
DG_NX5110.tPbusHeadA.tSummarized.bConfigMismatch = FALSE AND
DG_NX1005_24_vVdc_8_DO_Trans_8_DI.tGeneral.bConfigMismatch = FALSE AND
DG_NX1005_24 Vdc_8_DO_Trans_8_ DI.tGeneral.bFatalError = FALSE AND
DG_NX1005_24_Vdc_8_DO_Trans_8_DI.tDetailed.bOutputShortCircuit = FALSE AND
DG_NX1005_24_Vdc_8_DO_Trans_8_DI.tDetailed.bNoExternalSupply = FALSE THEN

QUALITY_PB_NX1005_O.VALIDITY:= VALIDITY_ GOOD;

QUALITY_PB_NX1005_O.FLAGS.FLAG_RESTART:= FALSE;

QUALITY_PB_NX1005_O.FLAGS.FLAG_FAILURE:= FALSE;

QUALITY_PB_NX1005_O.FLAGS.FLAG_OLD_DATA:= FALSE;

ELSE

QUALITY_PB_NX1005_O.VALIDITY:= VALIDITY_ INVALID;

QUALITY_PB_NX1005_O.FLAGS.FLAG_FAILURE:= TRUE;

// If the point have ever been updated once

IF NOT QUALITY_PB_NX1005_O.FLAGS.FLAG_RESTART THEN
QUALITY_PB_NX1005_O.FLAGS.FLAG_OLD_DATA:= TRUE;

END_TF

END_TF

END_TF

// In PROFIBUS communication failure with the PROFIBUS slave

ELSE

83

\

Q
=
G

5. CONFIGURATION

QUALITY_ PB_NX1005_O.VALIDITY:= VALIDITY_ INVALID;

QUALITY_ PB_NX1005_O.FLAGS.FLAG_COMM_FAIL:= TRUE;

QUALITY_PB_NX1005_O.FLAGS.FLAG_FAILURE:= FALSE;

// If the point have ever been updated once

IF NOT QUALITY_PB_NX1005_O.FLAGS.FLAG_RESTART THEN
QUALITY_PB _NX1005_O.FLAGS.FLAG_OLD_DATA:= TRUE;

END_TIF

END_TIF

5.2.5.1.8. PROFIBUS Analog Inputs Quality

// PROFIBUS analog input quality update, module NX6000

// In communication success case with PROFIBUS slave (address = 99)

IF DG_NX5001.tMstStatus.abySlv_State.bSlave_99 = TRUE THEN

// Waits the PROFIBUS slave become apt to exchange data and diagnostics

// (It is necessary to wait, avoiding invalid quality generation)

IF DG_NX5110.tPbusHeadA.tStatusl.bStation Non_ Existent = FALSE AND
DG_NX5110.tPbusHeadA.tStatusl.bStation_Not_Ready = FALSE AND
DG_NX5110.tPbusHeadA.wlIdentNumber > 0 THEN

QUALITY_PB_NX6000.FLAGS.FLAG_COMM_FAIL:= FALSE;

// If there is a module present on the bus (slot = 3) and

// if there is no modules config problem (general) and

// 1f there is no config problem in that module (specific) and

// if there is no fatal error identification by the module and

// if there is no calibration error indication and

// 1f there is no over/under range error indication and

// if there is no error indication of input in open loop

IF (DG_NX5110.tPbusHeadA.dwModuleNotPresent AND SHL(1, 3)) = 0 AND
DG_NX5110.tPbusHeadA.tSummarized.bConfigMismatch = FALSE AND
DG_NX6000_8_ATI_Voltage_Current.tGeneral.bConfigMismatch = FALSE AND
DG_NX6000_8_AI_Voltage_Current.tGeneral.bFatalError = FALSE AND
DG_NX6000_8_AI_Voltage_Current.tGeneral.bCalibrationError = FALSE AND
DG_NX6000_8_AT_Voltage_Current.tDetailed.tAnalogInput_00.bOverRange =

AND

DG_NX6000_8_AI_Voltage_Current.tDetailed.tAnalogInput_00.bUnderRange =

AND

DG_NX6000_8_AI_Voltage_Current.tDetailed.tAnalogInput_00.bOpenLoop = F

THEN

QUALITY_ PB_NX6000.VALIDITY:= VALIDITY_GOOD;

QUALITY_PB_NX6000.FLAGS.FLAG_RESTART:= FALSE;

QUALITY_PB_NX6000.FLAGS.FLAG_FAILURE:= FALSE;

QUALITY_PB_NX6000.FLAGS.FLAG_OLD_DATA:= FALSE;

QUALITY_PB_NX6000.FLAGS.FLAG_INACCURATE:= FALSE;

QUALITY_PB_NX6000.FLAGS.FLAG_OUT_OF_RANGE:= FALSE;

ELSE

// Condition to turns on imprecision indication

// (check first, because invalid validity must prevail)

IF DG_NX6000_8_AI_Voltage_Current.tGeneral.bCalibrationError = TRUE
QUALITY_PB_NX6000.VALIDITY:= VALIDITY_ QUESTIONABLE;
QUALITY_PB_NX6000.FLAGS.FLAG_INACCURATE:= TRUE;

ELSE

FALSE

FAL

ALSE

THEN

SE

84

\

Q
=
G

5. CONFIGURATION

QUALITY_PB_NX6000.FLAGS.FLAG_INACCURATE:= FALSE;
END_TIF
// Condition to turns on out of range indication
// (check first, because invalid validity must prevail)
IF DG_NX6000_8_AI_Voltage_Current.tDetailed.tAnalogInput_00.bOverRange
TRUE OR
DG_NX6000_8_ATI_Voltage_Current.tDetailed.tAnalogInput_00.bUnderRange =
TRUE THEN
QUALITY_PB_NX6000.VALIDITY:= VALIDITY_ QUESTIONABLE;
QUALITY_PB_NX6000.FLAGS.FLAG_OUT_OF_RANGE:= TRUE;

ELSE
QUALITY_PB_NX6000.FLAGS.FLAG_OUT_OF_RANGE:

END_TIF

// Condition to turns on general failure indication (priority)

IF (DG_NX5110.tPbusHeadA.dwModuleNotPresent AND SHL (1, 3)) > 0 OR
DG_NX5110.tPbusHeadA.tSummarized.bConfigMismatch = TRUE OR
DG_NX6000_8_AI_Voltage_Current.tGeneral.bConfigMismatch = TRUE OR
DG_NX6000_8_AI_Voltage_Current.tGeneral.bFatalkError = TRUE OR
DG_NX6000_8_AI_Voltage_Current.tDetailed.tAnalogInput_00.bOpenLoop = TRUE

THEN

QUALITY_PB_NX6000.VALIDITY:= VALIDITY_ INVALID;
QUALITY_PB_NX6000.FLAGS.FLAG_FAILURE:= TRUE;

// If the point have ever been updated once

IF NOT QUALITY_PB_NX6000.FLAGS.FLAG_RESTART AND

NOT DG_NX6000_8_ATI_Voltage_Current.tDetailed.tAnalogInput_00.bOpenLoop
THEN

FALSE;

QUALITY_PB_NX6000.FLAGS.FLAG_OLD_DATA:= TRUE;
END_TF
ELSE
QUALITY_PB_NX6000.FLAGS.FLAG_RESTART:= FALSE;
QUALITY_PB_NX6000.FLAGS.FLAG_FAILURE:= FALSE;
QUALITY_PB_NX6000.FLAGS.FLAG_OLD_DATA:= FALSE;
END_TF
END_TF
END_TF
// In PROFIBUS communication failure with the PROFIBUS slave
ELSE
QUALITY_PB_NX6000.VALIDITY:= VALIDITY_INVALID;
QUALITY_PB_NX6000.FLAGS.FLAG_COMM_FAIL:= TRUE;
QUALITY_PB_NX6000.FLAGS.FLAG_FAILURE:= FALSE;
// If the point have ever been updated once
IF NOT QUALITY PB_NX6000.FLAGS.FLAG_RESTART AND
NOT DG_NX6000_8_ATI_Voltage_Current.tDetailed.tAnalogInput_00.bOpenLoop THEN
QUALITY_PB_NX6000.FLAGS.FLAG_OLD_DATA:= TRUE;
END_TF
END_TF

85

Q
=
G

\

5. CONFIGURATION

5.2.5.1.9. PROFIBUS Analog Output Quality

// PROFIBUS analog output quality update, module NX6100

// In communication success case with PROFIBUS slave (address = 99)

IF DG_NX5001.tMstStatus.abySlv_State.bSlave_99 = TRUE THEN

// Waits the PROFIBUS slave become apt to exchange data and diagnostics

// (It 1s necessary to wait, avoiding invalid quality generation)

IF DG_NX5110.tPbusHeadA.tStatusl.bStation_Non_Existent = FALSE AND
DG_NX5110.tPbusHeadA.tStatusl.bStation_Not_Ready = FALSE AND
DG_NX5110.tPbusHeadA.wIdentNumber > 0 THEN

QUALITY_PB_NX6100.FLAGS.FLAG_COMM_FAIL:= FALSE;

// If there is a module present on the bus (slot = 4) and

// if there is no modules config problem (general) and

// if there is no config problem in that module (specific) and

// 1f there is no fatal error identification by the module and

// if there is no calibration error indication and

// if there is no external power supply missing indication and

// if there is no error indication of output in open loop and

// if there is no outputs short circuit indication

IF (DG_NX5110.tPbusHeadA.dwModuleNotPresent AND SHL (1, 4)) = 0 AND
DG_NX5110.tPbusHeadA.tSummarized.bConfigMismatch = FALSE AND
DG_NX6100_4_A0O_Voltage_Current.tGeneral .bConfigMismatch = FALSE AND
DG_NX6100_4_A0O_Voltage_Current.tGeneral.bFatalError = FALSE AND
DG_NX6100_4_AO_Voltage_Current.tGeneral.bCalibrationError = FALSE AND
DG_NX6100_4_AO_Voltage_Current.tGeneral.bNoExternalSupply = FALSE AND
DG_NX6100_4_AO_Voltage_Current.tDetailed.tAnalogOutput_00.bOpenLoop = FALSE

AND

DG_NX6100_4_AO_Voltage_Current.tDetailed.tAnalogOutput_00.bShortCircuit =

FALSE THEN

QUALITY_PB_NX6100.VALIDITY:= VALIDITY_GOOD;

QUALITY_PB_NX6100.FLAGS.FLAG_RESTART:= FALSE;

QUALITY_PB_NX6100.FLAGS.FLAG_FAILURE:= FALSE;

QUALITY_PB_NX6100.FLAGS.FLAG_INACCURATE:= FALSE;

QUALITY_ PB_NX6100.FLAGS.FLAG_OLD_DATA:= FALSE;

ELSE

// Condition to turns on imprecision indication

// (check first, because invalid validity must prevail)

IF DG_NX6100_4_A0O_Voltage_Current.tGeneral.bCalibrationError = TRUE THEN
QUALITY_PB_NX6100.VALIDITY:= VALIDITY_ QUESTIONABLE;
QUALITY_PB_NX6100.FLAGS.FLAG_INACCURATE:= TRUE;

ELSE
QUALITY_PB_NX6100.FLAGS.FLAG_INACCURATE:= FALSE;

END_TIF

// Condition to turns on general failure indication (priority)

IF (DG_NX5110.tPbusHeadA.dwModuleNotPresent AND SHL (1, 4)) > 0 OR
DG_NX5110.tPbusHeadA.tSummarized.bConfigMismatch = TRUE OR
DG_NX6100_4_AO_Voltage_Current.tGeneral.bConfigMismatch = TRUE OR
DG_NX6100_4_AO_Voltage_Current.tGeneral.bFatalError = TRUE OR
DG_NX6100_4_A0O_Voltage_Current.tGeneral .bNoExternalSupply = TRUE OR
DG_NX6100_4_A0O_Voltage_Current.tDetailed.tAnalogOutput_00.bOpenLoop = TRUE

OR
DG_NX6100_4_AO_Voltage_Current.tDetailed.tAnalogOutput_00.bShortCircuit =

TRUE THEN
QUALITY_PB_NX6100.VALIDITY:= VALIDITY_ INVALID;

86

\

Q
=
G

5. CONFIGURATION

QUALITY_PB_NX6100.FLAGS.FLAG_FAILURE:= TRUE;
// If the point have ever been updated once
IF NOT QUALITY_PB_NX6100.FLAGS.FLAG_RESTART AND NOT
DG_NX6100_4_A0O_Voltage_Current.tDetailed.tAnalogOutput_00.bOpenLoop
THEN
QUALITY_PB_NX6100.FLAGS.FLAG_OLD_DATA:= TRUE;
END_TF
ELSE
QUALITY_PB_NX6100.FLAGS.FLAG_RESTART:= FALSE;
QUALITY_PB_NX6100.FLAGS.FLAG_FAILURE: FALSE;
QUALITY_PB_NX6100.FLAGS.FLAG_OLD_DATA:= FALSE;
END_TIF
END_TF
END_TF
// In PROFIBUS communication failure with the PROFIBUS slave
ELSE
QUALITY_PB_NX6100.VALIDITY:= VALIDITY_INVALID;
QUALITY_PB_NX6100.FLAGS.FLAG_COMM_FAIL:= TRUE;
QUALITY_PB_NX6100.FLAGS.FLAG_FAILURE:= FALSE;
// If the point have ever been updated once
IF NOT QUALITY PB_NX6100.FLAGS.FLAG_RESTART AND
NOT DG_NX6100_4_AO_Voltage_Current.tDetailed.tAnalogOutput_00.bOpenLoop THEN
QUALITY_PB_NX6100.FLAGS.FLAG_OLD_DATA:= TRUE;
END_TF
END_TF

5.3. Serial Interfaces Configuration

531. COM1

The COM 1 communication interface, is composed by a DB9 female connector for RS-232C standard. It allows the point to

point communication (or in network by using a converter) in MODBUS RTU slave or MODBUS RTU master open protocols.

The parameters which must be configured for the proper functioning of the application are described below.
When using the MODBUS master/slave protocol, some of these parameters (such as Serial Mode, Data Bits, RX Threshold

and Serial Events) are automatically adjusted by MasterTool for the correct operation of this protocol.

Configuration Description Default Options
Serial Type Serial channel type configu- | 5o 535 RS-232C
ration.
Serial communication port 200, 300, 600, 1200, 1800,
Baud Rate speed configuration. 115200 2400, 4800, 9600, 19200,
38400, 57600, 115200 bps
Serial port parit q Odd
Parity Serial port parity configura- None Even
tion.
Space
Mark
None
Data Bits Sets the serial .commur%lca— 3 5.6.7and 8
tion character bits quantity.
Stop Bits Sets the serial port stop bits. 1 1,1.5and 2

5. CONFIGURATION

Configuration Description Default Options
- Extended Mode: Extended
Serial Mode Sets the serial pqrt operation Normal Mode o‘perat%on mod@ which fie-
mode configuration. livers information regarding
the received data frame.
- Normal Mode: Serial com-
munication normal opera-
tion mode.
Table 58: RS-232 Standard Serial Configuration
Notes:

Extended Mode: This serial communication operation mode provides information regarding the data frame received. The
information available is the following:

= One byte for the received data (RX_CHAR : BYTE): Store the five, six, seven or eight bits from the data received,
depending on the serial communication configuration.

= One byte for the signal errors (RX_ERROR : BYTE): It has the format described below:

Bit 0: O - the character in bits O to 7 is valid. 1 - the character in bits O to 7 is not valid (or it cannot be valid), due
to problems indicated in bits 10 to 15.

Bit 1: Not used.
Bit 2: Not used.

Bit 3: UART interruption error. The serial input remained in logic 0 (space) for a time greater than a character
(start bit + data bits + parity bit + stop bits).

Bit 4: UART frame error. The logic O (space) was read when the first stop bit was expected and it should be logic
1 (mark).

Bit 5: UART parity error. The parity bit read is not correct according to the calculated one.

Bit 6: UART overrun error. Data was lost during the FIFO UART reading. New characters were received before
the later ones were removed. This error will only be indicated in the first character read after the overrun error
indication. This means some old data were lost.

Bit 7: RX line overrun error. This character was written when the RX line was completed, overwriting the unread
characters.

= Two bytes for the timestamp signal (RX_TIMESTAMP : WORD): Indicates the silence time, within the 0 to 65535 inter-
val, using 10 us as base. It saturates in 655.35 ms if the silence time is higher than 65535 units. The RX_TIMESTAMP
of a character measures the time from a reference which can be any of the three options below:

On most of the cases, the end of the later character.
Serial port configuration.

The end of serial communication using the SERTAL_TX FB, in other words, when the last character is sent on line.

Besides measuring the silence between characters, the RX_TIMESTAMP is also important as it measures the silence
time of the last character on the RX line. The silence measuring is important for the correct protocol implementation,
as MODBUS RTU, for example. This protocol specifies an inter-frame greater than 3.5 characters and an inter-byte less
than 1.5 characters.

Data Bits: The serial interfaces Data Bits configuration limits the Stop Bits and Communication Parity fields. Therefore,
the stop bits number and the parity method will vary according to the data bits number.

5. CONFIGURATION

5.3.1.1.

The advanced configurations are related to the serial communication control, in other words, when it is necessary the
utilization of a more accurate data transmission and reception control.

Data Bits | Stop Bits | Parity

5 115 NO PARITY, ODD, EVEN, PARITY ALWAYS

’ ONE, PARITY ALWAYS ZERO
6 19 NO PARITY, ODD, EVEN, PARITY ALWAYS

’ ONE, PARITY ALWAYS ZERO
7 12 NO PARITY, ODD, EVEN, PARITY ALWAYS

’ ONE, PARITY ALWAYS ZERO
3 12 NO PARITY, ODD, EVEN, PARITY ALWAYS

’ ONE, PARITY ALWAYS ZERO

Advanced Configurations

Table 59: Specific Configurations

Configuration Description Default Options
Advanced Port Parameters

- RTS: Enabled at the be-
ginning of transmission and
restarted, as fast as possi-
ble after the end of it. E.g.

Executes the request control The RS-232/RS-485 exter-

Handshake for a command transmission | RTS Off nal converter control.

through RS-232C interface. - RTS Off: Always disabled.
- RTS On: Always enabled.
- RTS/CTS: In case the CTS
is disabled, the RTS is en-
abled. Therefore the CTS
enabling must be waited un-
til the transmission can start
again and the RTS restarted,
as fast as possible, at the end
of transmission. E.g. the
radio modems control using
the same modem signal.
- Manual RTS: the user is re-
sponsible for all control sig-
nals.

Bytes quantity which must

be received to generate

a new UART interrup-

tion. Low values make

the TIMESTAMP more

UART RX Threshold precise when the ~ EX- 8 1,4,8and 14

TENDED MODE is used
and minimizes the overrun
errors. However, values
too low may cause several
interruptions delaying the
CPU.

89

altus

5. CONFIGURATION

Configuration Description Default Options
Serial Events
When true, all received
bytes during transmission
will be discharged instead of - Enabled: Configuration en-
RX on TX going to the RX line. Used Disabled abled
to disable the full-duplex op- - Disabled: Configuration
eration of the RS-232C in- disabled
terface.
When true, generates an ex- - Enabled: Configuration en-
RX DCD Event ternal event due to DCD sig- Enabled abled
nal change. - Disabled: Configuration
disabled
When true, generates an ex- - Enabled: Configuration en-
RX CTS Event ternal event due to CTS sig- Enabled abled
nal change. - Disabled: Configuration
disabled

Notes:

RX on TX: This advanced parameter is valid for RS-232C settings and RS-422.

RX DCD Event: External events such as the DCD signal COM 1 of the CPUs NX3010, NX3020, NX3030, may be
associated only to tasks of custom project profile, for further information, please see the MasterTool IEC XE User Manual —

MU299609.

RX CTS Event: External events such as the CTS signal COM 1 of the CPUs NX3010, NX3020, NX3030, may be
associated only to tasks of custom project profile, for further information, please see the MasterTool IEC XE User Manual —

MU299609.

5.32. COM2

The serial interfaces Data Bits configuration limits the Stop Bits and Communication Parity fields. Therefore, the number

of stop bits and the parity method will vary according to the data bits number.

The table below shows the allowed configurations interfaces.

Table 60: RS-232 Standard Serial Advanced Configurations

Data Bits | Stop Bits | Parity

5 115 NO PARITY, ODD, EVEN, PARITY ALWAYS

’ ONE, PARITY ALWAYS ZERO
6 12 NO PARITY, ODD, EVEN, PARITY ALWAYS

’ ONE, PARITY ALWAYS ZERO
7 12 NO PARITY, ODD, EVEN, PARITY ALWAYS

’ ONE, PARITY ALWAYS ZERO
g 1.2 NO PARITY, ODD, EVEN, PARITY ALWAYS

’ ONE, PARITY ALWAYS ZERO

Table 61: Specific Configurations

920 altus

5. CONFIGURATION

5.3.2.1. Advanced Configurations

The advanced configurations are related to the serial communication control, in other words, when it is necessary the
utilization of a more accurate data transmission and reception control.

Configuration Description Default Options

Bytes quantity which must
be received for a new UART
interruption to be gener-
ated. = Low values make
the TIMESTAMP more pre-
UART RX Threshold cise when the EXTENDED 8 1,4,8and 14
MODE is used and min-
imizes the overrun errors.
However, values too low
may cause several interrup-
tions delaying the CPU.

Table 62: RS-485/RS-422 Standard Serial Advanced Configurations

5.4. Ethernet Interfaces Configuration

Nexto CPUs can provide more local Ethernet interfaces. The NX3030 CPU has NET 1 and NET 2. In addition of the local
Ethernet interfaces, the Nexto Series also provides remote Ethernet interfaces through the inclusion of the module NX5000.
NX5000 modules have only the NET 1 interface.

5.4.1. Internal Ethernet Interfaces

The interfaces are composed by a RJ45 communication connector 10/100Base-TX standard. It allows the point to point
or network communication in the following open protocols, for example: MODBUS TCP Client, MODBUS RTU via TCP
Client, MODBUS TCP Server and MODBUS RTU via TCP Server.

The parameters which must be configured for the proper functioning of the application are described below.

54.1.1. NET1
Configuration Description Default Options
. Enables the DHCP Client

Obtfun an IP address auto- functionality on the device | Unmarked Marked or Unmarked

matically ; .
for automatic IP assignment

IP Address IP address of the controller | g, ;g 15 | 1.0.0.1 to 223.255.255.254
in the Ethernet bus
Subnet mask of the con- 128.0.0.0 to

Subnetwork Mask troller in the Ethernet bus | 2>>-2>>-23%0 255.255.255.252

Gateway Address Controller Gateway address | 4, 6g 1553 0.0.0.0 to 223.255.255.254
in the Ethernet bus

Table 63: NET 1 Configuration

91 altus

5. CONFIGURATION

54.1.2. NET2

Configuration Description Default Options
IP Address IP address of the controller | o) e 16 1.0.0.1 to 223.255.255.254
in the Ethernet bus
Subnet mask of the con- 128.0.0.0 to
b b troller in the Ethernet bus 2552552550 255.255.255.252

Gateway address of the con-

iy st troller in the Ethernet bus

192.168.16.253 0.0.0.0 to 223.255.255.254

Table 64: NET 2 Configuration

It is not possible to configure more than one Ethernet interface of a CPU on the same subnet,
and this type of configuration is blocked by the MasterTool tool. Therefore, each Ethernet
interface must be configured on a different subnet.

5.4.2. NXS5000 Remote Ethernet Interfaces
54.2.1. NET1

The interface is composed by a RJ45 communication connector 10/100Base-TX standard. It allows the point to point or
network communication in the following open protocols: MODBUS TCP Client, MODBUS RTU via TCP Client, MODBUS
TCP Server and MODBUS RTU via TCP Server.

The parameters which must be configured for the proper functioning of the application are described below.

Configuration Description Default Options
IP Address IP address of the controller |55 ;e\ co 1.0.0.1 to 223.255.255.254
in the Ethernet bus
Subnet mask of the con- 128.0.0.0 to
e ol bR troller in the Ethernet bus 255.255.255.0 255.255.255.252

Gateway address of the con-

By Atifo troller in the Ethernet bus

192.168.xx.253 0.0.0.0 to 223.255.255.254

Table 65: NX5000 Remote NET 1 Configuration

5.4.2.2. Operation Mode of the NX5000 Remote Ethernet Interface

The NX5000 modules can be inserted in the project to increase the number of Ethernet interfaces if the local CPU interfaces
are not enough.

The Ethernet channels of the NX5000 modules can be used individually, or arranged in redundant pairs.

5.4.2.2.1. Redundant Mode

A pair of two Ethernet ports forming a redundant pair has a single IP address tied to the port pair. In this way, a client, such
as SCADA or MasterTool, connected to a server at the CPU, does not have to worry about changing the IP address if some of
the ports in the redundant pair fail.

In order to put together two NX5000 modules as a redundant pair, these two modules must necessary occupy adjacent
positions on the backplane rack and the checkbox Redundant from the module on the left must be selected, as show in the
figure below. By doing this, the parameters edition of the module on the right is blocked. The parameters edited in the module
inserted on the left get common for the two modules.

On the other hand, clearing the Redundant checkbox from the module on the left causes the separation of the modules,
which return to behave as individual modules without redundant.

92 altus

——

5. CONFIGURATION

When the Redundant Mode is selected, on the same screen other parameters are automatically enabled and must be con-
figured:

= Period of Redundancy Test (ms): Period for sending the communication test frame between the two NETs. Can be
configured with values between 100 and 9900, default 500

= Retries of Redundancy Test: Maximum number of times the NET that sent the frame will wait for a response. Can be
configured to values between 1 and 100, default 4

= Switching Period (s): Maximum time that NET Active will wait for any given packet. Can be configured with values
between 1 and 25, default 10

If the response time of the Redundancy Test reaches Test Period times the Number of Retries and the active interface
remains longer than the Switching Period without receiving any packets, a switchover occurs, making the previously inactive
interface active. It is important to note that have a delay between fault detection and activation of the inactive interface due to
the time required for its configuration. This delay can be up to a few tens of milliseconds.

When one of the NETs is active, it will assume the configured IP address, and the inactive NET will remain with its IP
Address, Subnet Mask and Gateway Address parameters blank in the CPU diagnostics.

Enable Interface

Obtain an IP address automatically
Ethernet Port Parameters
IP Address 192 . 168 . 15 . 68
Subnetwork Mask | 255 . 255 .255 . O
Gateway Address | 192 . 168 . 15 |, 253
Mode
) single © Redundant
Redundancy of Communication
Period of Redundancy Test {ms) 500

Retries of Redundancy Test 4

Alr [[

Switching Period (s) 10

Figure 51: Advanced Configuration of Remote Ethernet Interface - NX5000

5.4.3. Reserved TCP/UDP Ports

The following TCP/UDP ports of the Ethernet interfaces, both local and remote, are used by CPU services (depending on
availability according to table Protocols) and, therefore, are reserved and must not be used by the user.

Service TCP UDP
System Web Page 80 -
SNTP - 123
SNMP - 161
MODBUS TCP 502* -
MasterTool MT8500 1217% 1740:1743
SQL Server 1433 -
MQTT 1883* / 8883%* -
EtherNet/IP 44818 2222
IEC 60870-5-104 2404* -
OPC UA 4840 -
WEBVISU 8080 -
CODESYS ARTI 11740 -
PROFINET - 34964
Portainer Docker 9000 -

Table 66: Reserved TCP/UDP ports

* Default port, but user changeable.

5. CONFIGURATION

5.5. Protocols Configuration

Independently of the protocols used in each application, the Nexto Series CPUs has some maximum limits for each CPU
model. There are basically two different types of communication protocols: symbolic and direct representation mappings. The
maximum limit of mappings as well as the maximum protocol quantity (instances) is defined on table below:

NX3030
Mapped Points 20480
Mappings (Per Instance / Total) 5120/20480
Requests 512
NETSs — Client or Server Instances (Per 4716
NET / Total)
COM (n) — Master or Slave Instances
Control Centers 3

Table 67: Protocols Limits per CPU

Notes:

Mapped Points: It refers to the maximum number of mapped points supported by the CPU. Each mapping supports one
or more mapped points, depending on the size of the data when used with variables of type ARRAY.

Mappings: A “mapping” is the relationship between an internal application variable and an object of the application
protocol. This field informs the maximum number of mappings supported by the CPU. It corresponds to the sum of all
mappings made within the instances of communication protocols and their respective devices.

Requests: The sum of the requests of the communications protocols, declared on devices, may not exceed the maximum
number of requests supported by the CPU.

NETs - Clients or Servers Instances: This field defines the maximum number of protocol instances per Ethernet interface,
and also the total maximum distributed along all the Ethernet interfaces of the system.

COM (n) — Master or Slave Instances: Due to its characteristics, each serial interface supports only one communication
protocol instance. Examples of instances compatible with serial interfaces: MODBUS RTU Master and MODBUS RTU Slave.

Control Centers: “Control Center” is all client device connected to the CPU through protocol IEC 60870-5-104. This
field informs the maximum of client devices of control center type supported by the CPU. Correspond to the sum of all client
devices of communication protocol IEC 60870-5-104 Server (does not include master or clients from MODBUS RTU Slave,
MODBUS Server and DNP3 Server protocols).

The limitations of the MODBUS protocol for Direct Representation and symbolic mapping for the CPUs can be seen in
Tables 68 and 69, respectively.

Limitations MODBUS RTU | MODBUS RTU MODBUS MODBUS
Master Slave Ethernet Client | Ethernet Server
Mappings per instance 128 32 128 32
Devices per instance 64 1M 64 64?
Mappings per device 32 32 32 32
:::Illlzletaneous requests per in i i 128 64
Simultaneous requests per device - - 8 64

Table 68: MODBUS Protocol Limitations for Direct Representation

Notes:
Devices per instance:

= Master or Client Protocols: number of slaves or server devices supported by each Master or Slave protocol instance.

= MODBUS RTU Slave Protocol: the limit (! informed relates to serial interfaces that do not allow a Slave to establish
communication through the same serial interface, simultaneously, with more than one Master device. It’s not necessary,
nor is it possible to declare or configure the Master device in the instance of the MODBUS RTU slave protocol. The
master device will have access to all the mappings made directly on the instance of MODBUS RTU slave protocol.

94 altus

5. CONFIGURATION

= MODBUS RTU Server Protocol: the limit @ informed relates to the Ethernet interfaces, which limit the number of
connections that can be established with other devices through a single Ethernet interface. It is not necessary, nor is it
possible to declare or configure Clients devices in the instance of the MODBUS Server protocol. All Clients devices
will have access to all the mappings made directly in the instance of the MODBUS Server protocol.

Mappings per device: The maximum number of mappings per device, despite being listed above, is also limited by the
protocol maximum number of mappings. Also to be considered the maximum CPU mappings as in Table 67.

Simultaneous Requests per Instance: Number of requests that can be simultaneously transmitted by each Client protocol
instance or that can be received simultaneously by each Server protocol instance. MODBUS RTU protocol instances, Master
or Slave, do not support simultaneous requests.

Simultaneous Requests per Device: Number of requests that can be simultaneously transmitted to each MODBUS Server
device, or may be received simultaneously by each MODBUS client device. MODBUS RTU devices, Master or Slave, do not
support simultaneous requests.

Limitations MODBUS RTU | MODBUS RTU MODBUS MODBUS
Master Slave Ethernet Client | Ethernet Server
Devices per instance 64 1 64 64
Requests per device 32 - 32 -
:tlar‘rllllzletaneous requests per in i i 128 64
Simultaneous requests per device - - 8 64

Table 69: MODBUS Protocol Limitations for Symbolic Mappings

Notes:
Devices per instance:

= Master or Client Protocol: Number of slave or server devices supported by each Master or Client protocol instance.

= MODBUS RTU Slave Protocol: the limit (! informed relates to serial interfaces that do not allow a Slave to establish
communication through the same serial interface, simultaneously, with more than one Master device. It’s not necessary,
nor is it possible to declare or configure the Master device in the instance of the MODBUS RTU slave protocol. The
master device will have access to all the mappings made directly on the instance of MODBUS RTU slave protocol.

= MODBUS RTU Server Protocol: the limit @ informed relates to the Ethernet interfaces, which limit the amount of
connections that can be established with other devices through a single Ethernet interface. It is not necessary, nor is it
possible to declare or configure Clients devices in the instance of the MODBUS Server protocol. All Clients devices
will have access to all the mappings made directly in the instance of the MODBUS Server protocol.

Requests by device: Number of requests, such as reading or writing holding registers, which can be configured for each of
the devices (slaves or servers) from Master or Client protocols instances. This parameter does not apply to instances of Slave
or Server protocols.

Simultaneous Requests per Instance: Number of requests that can be simultaneously transmitted by each client protocol
instance or that can be received simultaneously by each server protocol instance. MODBUS RTU protocol instances, Master
or Slave, do not support simultaneous requests.

Simultaneous Requests per Device: Number of requests that can be simultaneously transmitted for each MODBUS server
device, or may be received simultaneously from each MODBUS client device. MODBUS RTU devices, Master or Slave do
not support simultaneous requests.

Simultaneous requests to a variable associated to communication points, those which support
the SBO operation mode (Select Before Operate), even being received from different devices
are not supported. Once started the selection/operation of a point by a specific device, that
must be finished before this point become able to be commanded by another device.

The protocol IEC 60870-5-104 Server limitations can be watched on table below.

95

]
=
G

\

5. CONFIGURATION

Notes:

Limitations IEC 60870-5-104 Server
Devices per instance 3
Simultaneous requests per instance 3

Simultaneous requests per device

1

Table 70: Protocol IEC 60870-5-104 Server Limits

Devices per instance: Quantity of client devices, of type control center, supported for each IEC 60870-5-104 Server
protocol instance. The limit informed might be smaller because of the CPU total limits (check Table 67).

Simultaneous requests per instance: Quantity of requests that can be received simultaneously by each instance of Server

protocol.

Simultaneous requests per device: Quantity of requests that can be received simultaneously of each IEC 60870-5-104

Client device.

5.5.1.

Protocol Behavior x CPU State

The table below shows in detail the behavior of each configurable protocol in Nexto Series CPUs in every state of operation.

CPU operational state
STOP RUN
After
down- After the After a
load, applica- Non re- | Redundant
Protocol Type before tion goes After -an dundant in Stand- br?ak- .
appli- to stop | P tion or Active | by po“.lt m
cation (PAUSE) MainPrg
starts
MODBUS Symbol | Slave/Server v v v v v v
Master/Client x x x v v v
MODBUS Slave/Server x x x v v x
Master/Client x x x v v v
SOE (DNP3) Outstation v v v v x v
IEC 60870-5-104 Server x x x v x 4
EtherCAT Master v v x v NA v
OPC DA Server v v v v x v
OPC UA Server v v v v v v
SNTP Client v 4 v v v v
HTTP Server v v v v v v
SNMP Agent v v v v v v
EtherNet/IP Scanner v v x v NA x
Adapter x v x v NA x
Table 71: Protocol Behavior x CPU State
Notes:

Symbol ¥": Protocol remains active and operating normally.
Symbol %: Protocol is disabled.

MODBUS Symbol Slave/Server: To keep the protocol communicating when the CPU isn’t in RUN or after a breakpoint,
it’s need to check the option “Keep the communication running on CPU stop”.

96

altus

5. CONFIGURATION

5.5.2. Double Points

The input and output double digital points representation is done through a special data type called DBP (defined in the
LibDataTypes library). This type consist basically in a structure of two BOOL type elements, called OFF and ON (equivalent
to TRIP and CLOSE respectively).

In Nexto, variables of this type cannot be associated to digital input and output modules, being necessary the single digital
points mapping, BOOL type, and the treatment by application to conversion in double points.

To further information about the double points mapping in the input and output digital modules check the TEC 60870-5-104
Server section.

5.5.3. CPU’s Events Queue

The CPU owns an events queue of type FIFO (First In, First Out) used to store temporarily the events related to communi-
cation points until they are moved to their final destiny.

All communication points events generated in the CPU are directed and stored in CPU’s queue. This queue has the
following features:

= Size: 1000 events
= Retentivity : it is not retentive
= Overflow policy: keep the newests

In the Nexto PLC, the events queue is stored in a non-retentive memory area (volatile). This
way, the events present in CPU’s queue, which haven’t been transmitted yet to the control
center, are going to be lost in a CPU’s eventual power off.

The CPU’s event queue is redundant, that means it is synchronized each cycle between both CPUs, when is used CPU’s
redundancy. Further information can be found on the section about CPU redundancy.

The in and out of events in this queue follows the concept of producer/consumer. Producers are those system elements
capable of generate events, adding events in the CPU’s queue, while the consumers are those system elements which receive
and use this events, taking them of the CPU’s queue. The figure below describes this working, including the example of some
events consumers and producers.

97

Q
=
G

\

5. CONFIGURATION

IEC 60870-5-104 IEC 60870-5-104 IEC 60870-5-104
Server - Client 1 Server - Client 2 Server - Client 3

... Consumers

CPU Event Queue

MODBUS Dri
Client river Internal Points ... Producers

Figure 52: CPU’s Event Queue

5.5.3.1. Consumers

The consumers are typically communication drivers that will communicate with SCADA or HMI. After been stored in
CPU’s queue, the consumers receive the events related to communication points mapped in its configuration. These events are
then stored in a consumer’s own events queue, which the size and working are described on the communication driver specific
section.

5.5.3.2. Queue Functioning Principles

Once stored in CPU’s queue, each event is transmitted to the consumer that has this communication point in its data base.
On the figure above, the Event 0 is referred to a communication point mapped to two control centers IEC 60870-5-104 (Client
1 and 2). Thus the Event 1 is referred to a communication point mapped only to one control center IEC 60870-5-104 (Client
2). By its time, the Event 2 is referred to a communication point mapped to another control center IEC 60870-5-104 (Client
3).

The events remain stored in the CPU’s queue until all its consumers acknowledge its receiving. The criteria used to confirm
the receive is specific of each consumer. In case of the IEC 60870-5-104 Server, the acknowledge occurs when the event is
transmitted to the IEC 60870-5-104 client.

In Nexto Series case, there are no diagnostics available to watch the CPU’s events queue occupation, not even information
about the queue overflow. However the consumers have a diagnostics group referred to its events queue. Further information
can be found at the specific driver communication section.

98

Q
=
G

\

5. CONFIGURATION

5.5.3.2.1. Overflow Sign

The overflow sign to the consumers’ events queue occurs in two situations:

= When the consumer events queue is out of space to store new events

= If the CPU aborted the event generation (because occurred to more events in a single execution cycle than the events
queue total size)

5.5.3.3. Producers

The producers are typically communication drivers or PLC internal elements that are capable to generate events. The
previous figure show some examples.

= Internal Points: This is a PLC’s firmware internal element, which detects events each execution cycle (MainTask)
to those communication points that don’t have a defined origin and then inserts the events in the CPU’s queue. The
maximum number of events that can be detected in each MainTask cycle is equal to the CPU’s events queue size. In case
the number of generated events is bigger than this, in a single cycle, the exceeding are going to be lost.

= MODBUS Driver (Client/Server/Master/Slave): The variables value change caused by MODBUS read/write are de-
tected at each MainTask cycle and then the events are inserted in CPU’s queue. In Client/Master cases, are also generated
quality events when there is a communication failure with the slave device.

5.54. Interception of Commands Coming from the Control Center

The Nexto PLC has a function block that allows selection commands and operation to the output points received by server
drivers (IEC 60870-5-104 Server) been treated by the user logic. This resource allows the interlocking implementation, as well
as the handling of the received command data in the user logic, or yet the command redirecting to different IEDs.

The commands interception is implemented by the CommandReceiver function block, defined in the LibRtuStandard. The
input and output parameters are described on the following tables:

5. CONFIGURATION

Parameter

Type

Description

bExec

BOOL

When TRUE, executes the command interception

bDone

BOOL

Indicates that the command output data have been already
processed, releasing the function block to receive another
command

dwVariableAddr

DWORD

Variable address, mapped in the server driver, which will
receive the client command

eCommandResult

ENUM

Input action defined by user from the following list:
SUCCESS(0)

NOT_SUPPORTED(1)
BLOCKED_BY_SWITCHING_HIERARCHY(2)
SELECT_FAILED(3)

INVALID_POSITION(4)
POSITION_REACHED(S)
PARAMETER_CHANGE_IN_EXECUTION(6)
STEP_LIMIT(7)

BLOCKED_BY_MODE(8)
BLOCKED_BY_PROCESS(9)
BLOCKED_BY_INTERLOCKING(10)
BLOCKED_BY_SYNNCHROCHECK(11)
COMMAND_ALREADY_IN_EXECUTION(12)
BLOCKED_BY_HEALTH (13)
ONE_OF_N_CONTROL(14)
ABORTION_BY_CANCEL(15)
TIME_LIMIT_OVER(16)
ABORTION_BY_TRIP(17)
OBJECT_NOT_SELECTED(18)
OBJECT_ALREADY_SELECTED(19)
NO_ACCESS_AUTHORITY (20)
ENDED_WITH_OVERSHOOT(21)
ABORTION_DUE_TO_DEVIATION(22)
ABORTION_BY_COMMUNICATION_LOSS(23)
BLOCKED_BY_COMAND(24)

NONE(25)
INCONSISTENT_PARAMETERS(26)
LOCKED_BY_OTHER_CLIENT(27)
HARDWARE_ERROR(28)

UNKNOWN(29)

dwTimeout

DWORD

Time-out [ms] to the treatment by user logic

Table 72: CommandReceiver Function Block Input Parameters

Notes:

bExec: When FALSE, the command just stop being intercepted for the user application, but it keeps being treated normally

by the server.

bDone: After the command interception, the user is going to be responsible for treat it. At the end of the treatment, this
input must be enabled for a new command can be received. Case this input is not enabled, the block is going to wait the time

defined in dwTimeout, to then become capable of intercept new commands.

eCommandResult: Treatment results of command intercepted by user. The result returned to the client that sent the
command, which must be attributed together with the input bDone, is converted to the protocol’s format from which was
received the command. In Nexto Series it is only supported the interception of commands coming from protocol IEC 60870-

5-104. In protocol interception, any return different from SUCCESS results in a negative Acknowledge.

100

5. CONFIGURATION

It is not recommended the simultaneous commands interception to one same variable by two
or more CommandReceiver function blocks. Just one of the function blocks will intercept
correctly the command, being able to suffer undesirable interference from the others function
blocks if addressed to the same variable.

Parameter

Type

Description

bCommandAvailable

BOOL

are available to be processed

sCommand

STRUCT

composed by the following fields:
eCommand

sSelectParameters

sOperateParameters

The description of each field is in this section.

eStatus

ENUM
(TYPE_RESULT)

list:
OK_SUCCESS(0)
ERROR_FAILED(1)

Table 73: CommandReceiver Function Block Output Parameters

Note:

eStatus: Return of a register process of a communication point command interception. When the interception is regis-
tered with success OK_SUCCESS is returned, else ERROR_FAILED is. In case interceptor register failure, commands to the

determined point are not intercepted by this function block. TYPE_RESULT is defined in LibDataTypes library.

Supported commands are described on table below:

Parameter Type Description
NO_COMMAND(0)
ENUM
eCommand NU SELECT(1)
OPERATE(2)

Table 74: CommandReceiver Function Block Supported Commands

The parameters that build the sSelectParameters, sOperateParameters and sCancelParameters structures are described on

the following table:
Parameter Type Description
Received selection command configuration. This struc-
sSelectConfig STRUCT ture parameters are described on Table 76
Received value in a select, when is received a selection
sValue STRUCT command with value. This structure parameters are de-
scribed on Table 79

Table 75: Parameters sSelectParameters

101

Indicates that a command was intercepted and the data

This structure stores received command data, which is

Out of function action from obtained result, according to

[
G

\

5. CONFIGURATION

Parameter Type Description
bSelectWithValue BOOL When true indicates a selection command reception with
value.
Table 76: Parameters sSelectConfig
Parameter Type Description
Received selection command configuration. This struc-
i STRUCT ture parameters are described on Table 78
Field of received operation command referred value. This
sValue STRUCT structure parameters are described on Table 79
Table 77: Parameters sOperateParameters
Parameter Type Description
bDirectOperate BOOL When true 1nd1.cates that an operation command without
select was received.
D pement BOOL When true 1n(.11(.:ates that a command, Whl.Ch doesn’t re-
quire the receiving acknowledge, was received.
bTimedOperate BOOL th?n true 1ndlca.tes that an operation command activated
by time was received.
Programming of the instant in which it must be runned
liOperateTime LINT the command. This field is valid only when bTimedOper-
ate is true.
bTest BOOL When true indicates that the received command was sent
only for test, as so the command must not be runned.
Table 78: Parameters sOperateConfig
Parameter Type Description
Informs the type of the received command:
NO_COMMAND(0)
P ENUM
eParamType SINGLE_POINT _COMMAND(1)
DOUBLE_POINT_COMMAND(2)
INTEGER_STATUS_COMMAND(3)
ENUMERATED_STATUS_COMMAND(4)
ANALOGUE_VALUE_COMMAND(5)
When a command is received, in received command type
sSinglePoint STRUCT function, Qeﬁned by ePa'ramType, the corresponding data
structure is filled. This structures parameters are de-
scribed on Tables 80 to 84
sDoublePoint STRUCT
sIntegerStatus STRUCT
sEnumeratedStatus STRUCT
sAnalogueValue STRUCT

Table 79: Parameters sValue

102

altus

5. CONFIGURATION

Parameter Type Description
bValue BOOL Point operation value.
The pulsed command configuration parameters are stored
sPulseConfig STRUCT in this structure. This structure parameters are described
on Table 85.
Table 80: Parameters sSinglePoint
Parameter Type Description
bValue BOOL Point operation value.
The pulsed command configuration parameters are stored
sPulseConfig STRUCT in this structure. This structure parameters are described
on Table 85.
Table 81: Parameters sDoublePoint
Parameter Type Description
diValue DINT Point operation value.
Table 82: Parameters sIntegerStatus
Parameter Type Description
dwValue DWORD Point operation value.
Table 83: Parameters sEnumeratedStatus
Parameter Type Description
Informs the data type of the received analog value.
ENUM
eType INTEGER (0)
FLOAT (1)
diValue DINT Point operation value, integer format.
fValue REAL Point operation value, float format.
Table 84: Parameters sAnalogueValue
Parameter Type Description
bPulseCommand BOOL When true indicates that received command is pulsed.
dwOnDuration DWORD Zrklns is time, in milliseconds, that the output must remain
dwOffDuration DWORD Zfl}ls is time, in milliseconds, that the output must remain
dwPulseCount DWORD Number of times the command must be executed.

Table 85: Parameters sPulseConfig

To intercept commands to a specific point, first it is need to load in the dwVariableAddr parameter the variable address cor-
respondent to the point wanted to intercept the commands and then execute a pulse in the bExec parameter. Once the command

103 altus

5. CONFIGURATION

was intercepted, the function block informs that a command was intercepted through bCommandAvailable parameter. The
intercepted command information are then filled in the sCommand and eStatus output parameters, according to the received
command type. This operation depends only of the received command type, don’t matter the variable’s data type to which is
being intercepted the command. The interception is finished and then the function block can be released to intercept a new
command when bDone parameter is true. Yet must be pointed the command processing result in eCommandResult.

5.5.5. MODBUS RTU Master

This protocol is available for the Nexto Series CPUs in its serial channels. By selecting this option at MasterTool IEC XE,
the CPU becomes MODBUS communication master, allowing the access to other devices with the same protocol, when it is
in the execution mode (Run Mode).

There are two configuration modes for this protocol. One makes use of Direct Representation (%Q), in which the variables
are defined by its address. The other, called Symbolic Mapping has the variables defined by its name.

Regardless of the configuration mode, the steps to insert a protocol instance and configure the serial interface are the same.
The procedure to insert a protocol instance is found in detail in the MasterTool IEC XE User Manual - MU299609 or in the
section Inserting a Protocol Instance. The remaining configuration steps are described below for each mode.

= Add the MODBUS RTU Master Protocol instance to the serial channel COM 1 or COM 2 (or both, in case of two
communication networks). To execute this procedure, see Inserting a Protocol Instance section.

= Configure the serial interface, choosing the transmission speed, the RTS/CTS signals behavior, the parity, the channel
stop bits, among others configurations by a double click on the COM 1 or COM 2 serial channel. See Serial Interfaces
Configuration section.

5.5.5.1. MODBUS Master Protocol Configuration by Symbolic Mapping
To configure this protocol using symbolic mapping, you must perform the following steps:

= Configure the general parameters of the MODBUS Master protocol, like: transmission delay times and minimum inter-
frame as in Figure 53.

= Add and configure devices via the General Parameters tab, defining the slave address, communication time-out and
number of communication retries as can be seen in Figure 54.

= Add and configure the MODBUS mappings on Mappings tab as Figure 55, specifying the variable name, data type, and
the data initial address, the data size and range are filled automatically.

» Add and configure the MODBUS requests as presented in Figure 56, specifying the function, the scan time of the request,
the starting address (read/write), the data size (read/write) and generate diagnostic variables and disabling the request
via the buttons at the bottom of the window.

5.5.5.1.1. MODBUS Master Protocol General Parameters — Symbolic Mapping Configuration

The general parameters, found on the MODBUS protocol initial screen (figure below), are defined as:

Configuration (Bus) ﬁ MODBUS_Symbol_RTU_Master X
Settings
send Delay {ms) 0 =
Minimum Interframe {chars) |3.5 =

Figure 53: MODBUS RTU Master Configuration Screen

5. CONFIGURATION

Configuration Description Default Options
Send Delay (ms) Delay for the answer trans- |, 0 to 65535
mission.
Minimum Interframe Mlnlmum silence time be- 35 3.5 10 100.0
(chars) tween different frames.
Table 86: MODBUS RTU Master General Configurations
Notes:

Send Delay: The answer to a MODBUS protocol may cause problems in certain moments, as in the RS-485 interface or
other half-duplex. Sometimes there is a delay between the slave answer time and the physical line silence (slave delay to put
RTS in zero and put the RS-485 in high impedance state). To solve this problem, the master can wait the determined time in
this field before sending the new request. Otherwise, the first bytes transmitted by the master could be lost.

Minimum Interframe: The MODBUS standard defines this time as 3.5 characters, but this parameter is configurable in
order to attend the devices which do not follow the standard.

The MODBUS protocol diagnostics and commands configured, either by symbolic mapping or direct representation, are
stored in T_DIAG_MODBUS_RTU_MASTER_1 variables. For the direct representation mapping, they are also in 4 bytes and

8 words which are described in table below (where “n” is the configured value in the %Q Start Address of Diagnostics Area
field):

Direct Repre- Diagnostic Variable
sentation T_DIAG_MODBUS Size Description
Variable _RTU_MASTER _1.*
Diagnostics Bits:
% QX(n).0 tDiag. BIT The master is running.
bRunning
; The master is not running (see bit: bInter-
%QX(n).1 tDiag. BIT
bNotRunning ruptedByCommand).
) The bit bNotRunning was enabled as the
%QX(n).2 tDiag. BIT master was interrupted by the user through
bInterruptedByCommand command bits.
%QX(n).3 tDiag. BIT Discontinued diagnosis.
bConfigFailure
%QX(n).4 tDiag. BIT Discontinued diagnosis.
bRXFailure
%QX(n).5 tDiag. BIT Discontinued diagnosis.
bTXFailure
%QX(n).6 tDiag. BIT Ilrlldlcatzs 11f t'here is failure in the module or
bModuleFailure the module 1s not present.
%QX(n).7 tDiag. BIT Reserved
bDiag_7_reserved
Error Codes:
0: there are no errors
1: invalid serial port
2: invalid serial port mode
3: invalid baud rate
4: invalid data bits
5: invalid parity
6: invalid stop bits
7: invalid modem signal parameter

105 altus

. CONFIGURATION

Direct Repre- Diagnostic Variable
sentation T _DIAG_MODBUS Size Description
Variable _RTU_MASTER_1.*
8: invalid UART RX Threshold parameter
9: invalid time-out parameter
10: busy serial port
11: UART hardware error
12: remote hardware error
20: invalid transmission buffer size
% QB(n+1) eErrorCode SERIAL_STATUS 21: invalid signal modem method

(BYTE)
22: CTS time-out = true

23: CTS time-out = false

24: transmission time-out error

30: invalid reception buffer size

31: reception time-out error

32: flow control configured differently
from manual

33: invalid flow control for the configured
serial port

34: data reception not allowed in normal
mode

35: data reception not allowed in extended
mode

36: DCD interruption not allowed

37: CTS interruption not allowed

38: DSR interruption not allowed

39: serial port not configured

50: internal error in the serial port

Command bits, automatically initialized:

%QX(n+2).0 tCommand. BIT Stop master.
bStop

%QX(n+2).1 tCommand. BIT Restart master.
bRestart

% QX(n+2).2 tCommand. BIT Restart diagnostics statistics (counters).
bResetCounter

%QX(n+2).3 tCommand. BIT Reserved
bDiag_19_reserved

%QX(n+2).4 tCommand. BIT Reserved
bDiag_20_reserved

%QX(n+2).5 tCommand. BIT Reserved
bDiag_21_reserved

%QX(n+2).6 tCommand. BIT Reserved
bDiag_22 reserved

%QX(n+2).7 tCommand. BIT Reserved
bDiag_23_reserved

% QB(n+3) byDiag_3_reserved BYTE Reserved

Communication Statistics:

Counter of request transmitted by the mas-

tStat.
% QW (n+4) WORD ter (0 to 65535).

wTXRequests

106 altus

5. CONFIGURATION

Direct Repre- Diagnostic Variable
sentation T _DIAG_MODBUS Size Description
Variable _RTU_MASTER _1.*
%QW(n+6) tStat. WORD Chounter of (r)lornézlsge;sponses received by
wRXNormalResponses the master (0 to).
%QW(n+8) tStat. WORD Coupte(ri c;)f re;ponses w18h ex6cseé)§150n codes
wRXExceptionResponses received by the master (0 to)-
Counter of illegal responses received by
% QW (n+10) tStat. WORD master — invalid syntax, not enough re-
wRXIllegalResponses ceived bytes, invalid CRC — (0 to 65535).
Counter of overrun errors during reception
%QW(n+12) tStat. WORD)
wRXOverrunErrors - UART FIFO or RX line — (0 to 65535)
Counter of answers with construction er-
% QW (n+14) tStat. WORD rors, parity or failure during reception (0 to
wRXIncompleteFrames 65535).
Counter of CTS time-out error, using RT-
% QW (n+16) tStat. WORD S/CTS handshake, during transmission (0
wCTSTimeOutErrors to 65535).
%QW(n+18) tStat. WORD Reserved
wDiag_18_Reserved
Table 87: MODBUS RTU Master Diagnostics
Note:

Counters: All MODBUS RTU Master diagnostics counters return to zero when the limit value 65535 is exceeded.

5.5.5.1.2.

Devices Configuration — Symbolic Mapping configuration

The devices configuration, shown on figure below, follows the following parameters:

Configuration (Bus)
Mappings
Requests

General Parameters

(] MODBUS_Device X

Settings

Slave Address 1

Communication Time-out (ms) 3000

Maximum Mumber of Retries |2

L ARERRES

Figure 54: Device General Parameters Settings

Configuration Description Default Options
Slave Address MODBUS slave address 1 0to 255
Communication Time-out]?eﬁnes the application level 3000 10 10 65535
(ms) time-out
Maximum Number of Re- D'e fines the numt?ers of re-
tries tries before reporting a com- 2 0to9
munication error

Table 88: Device Configurations

107

altus

5. CONFIGURATION

Notes:

Slave Address: According to the MODBUS standard, the valid slave addresses are from O to 247, where the addresses
from 248 to 255 are reserved. When the master sends a writing command with the address configured as zero, it is making
broadcast requests in the network.

Communication Time-out: The communication time-out is the time that the master waits for a response from the slave
to the request. For a MODBUS RTU master device it must be taken into account at least the following system variables: the
time it takes the slave to transmit the frame (according to the baud rate), the time the slave takes to process the request and the
response sending delay if configured in the slave. It is recommended that the time-out is equal to or greater than the time to
transmit the frame plus the delay of sending the response and twice the processing time of the request. For more information,
see Communication Performance section.

Maximum number of retries: Sets the number of retries before reporting a communication error. For example, if the
slave does not respond to a request and the master is set to send three retries, the error counter number is incremented by one
unit when the execution of these three retries. After the increase of the communication error trying to process restarts and if
the number of retries is reached again, new error will increment the counter.

5.5.5.1.3. Mappings Configuration — Symbolic Mapping Settings

The MODBUS relations configuration, showed on figure below, follows the parameters described on table below:

] Configuration (Bus)] MODBUS Device x| B

‘ Value Variabe Data Type s Data size

Mappings |

Requests .

General Parameters

\

Generate Quality Variables

Figure 55: MODBUS Data Mappings Screen

108 altus

5. CONFIGURATION

Configuration Description Default Options

Name of a variable declared
in a program or GVL

Coil - Write (1 bit)

Coil - Read (1 bit)

Holding Register - Write
Data Type MODBUS data type - (16 bits)
Holding Register - Read (16
bits)
Holding Register — Mask
AND (16 bits)
Holding Register — Mask
OR (16 bits)
Input Register (16 bits)
Input Status (1 bit)

Value Variable Symbolic variable name -

Initial address of the MOD-

Data Start Address BUS data - 1 to 65536
Data Size Size of the MODBUS data - 1 to 65536
Data Range The address range of config-))

ured data

Table 89: MODBUS Mappings Settings

Notes:
Value Variable: this field is used to specify a symbolic variable in MODBUS relation.
Data type: this field is used to specify the data type used in the MODBUS relation.

Data Type Size [bits] | Description
Coil - Write 1 Writing digital output.
Coil - Read 1 Reading digital output.
Holding Register - Write 16 Writing analog output.
Holding Register - Read 16 Reading analog output.
Holding Register - Mask AND 16 I/?;;l:g output which can be read or written with AND
Holding Register - Mask OR 16 Analog output which can be read or written with OR
mask.
Input Register 16 Analog input which can be only read.
Input Status 1 Digital input which can be only read.

Table 90: Data Types Supported in MODBUS

Data Start Address: Data initial address of a MODBUS mapping.

Data Size: The size value specifies the maximum amount of data that a MODBUS interface can access, from the initial
address. Thus, to read a continuous address range, it is necessary that all addresses are declared in a single interface. This field
varies with the MODBUS data type configured.

Data Range: This field shows to the user the memory address range used by the MODBUS interface.

5.5.5.1.4. Requests Configuration — Symbolic Mapping Settings

The configuration of the MODBUS requests, viewed in figure below, follow the parameters described in table below:

109 altus

5. CONFIGURATION

Mappings

Ping () S S
Disgnostics Variable Type NXMODBUS_DIAGNOSTIC_STRUCTS.T_DIAG_MODBUS_RTU_MAPPING_i [variables | Varizbies |
Figure 56: Data Requests Screen MODBUS Master
Configuration Description Default Value | Options
01 — Read Coils
02 — Read Input Status
03 — Read Holding Regis-
Function Code MODBUS function type - ters
04 — Read Input Registers
05 — Write Single Coil
06 — Write Single Register
15 — Write Multiple Coils
16 — Write Multiple Regis-
ters
22 — Mask Write Register
23 — Read/Write Multiple
Registers
Polling (ms) Communication period (ms) 100 0 to 3600000
Initial address of the MOD-
Read Data Start Address BUS read data - 1 to 65536
Read Data Size Size of MODBUS Read data - Esee%ends on the function
Read Data Range MODBUS Read data ad- ; 0t 2147483646
dress range
Write Data Start Address | 113l address of the MOD- - 1 to 65536
BUS write data
Write Data Size Size of MODBUS Write) Depends on the function
data used
Write Data Range MODBUS Write data ad- - 0 to 2147483647

dress range

110

5. CONFIGURATION

Configuration Description Default Value | Options

Diagnostic Variable Diagnostic variable name - Name of a variable declared

in a program or GVL
Field for symbolic variable
used to disable, individually,
MODBUS requests config-
Disabling Variable Variable used ' to disable) ured. This variable mu§t be
MODBUS relation of type BOOL. The variable

can be simple or array el-
ement and can be in struc-
tures.

Table 91: MODBUS Relations Configuration

Notes:

Setting: the number of factory default settings and the values for the column Options may vary according to the data type
and MODBUS function (FC).

Function Code: MODBUS (FC) functions available are the following:

Code
DEC | HEX Description
1 0x01 | Read Coils (FC 01)

2 0x02 | Read Input Status (FC 02)

3 0x03 | Read Holding Registers (FC 03)

4 0x04 | Read Input Registers (FC 04)
5

6

0x05 | Write Single Coil (FC 05)

0x06 | Write Single Holding Register (FC 06)

15 0xOF | Write Multiple Coils (FC 15)

16 0x10 | Write Multiple Holding Registers (FC 16)

22 0x16 | Mask Write Holding Register (FC 22)

23 0x17 | Read/Write Multiple Holding Registers (FC 23)

Table 92: MODBUS Functions Supported by Nexto CPUs

Polling: this parameter indicates how often the communication set for this request must be performed. By the end of a
communication will be awaited a time equal to the value configured in the field polling and after that, a new communication
will be executed.

Read Data Start Address: field for the initial address of the MODBUS read data.

Read Data Size: the minimum value for the read data size is 1 and the maximum value depends on the MODBUS function
(FC) used as below:

= Read Coils (FC 01): 2000

= Read Input Status (FC 02): 2000

= Read Holding Registers (FC 03): 125

= Read Input Registers (FC 04): 125

= Read/Write Multiple Registers (FC 23): 121

Read Data Range: this field shows the MODBUS read data range configured for each request. The initial address, along
with the read data size will result in the range of read data for each request.
Write Data Start Address: field for the initial address of the MODBUS write data.

Write Data Size: the minimum value for the write data size is 1 and the maximum value depends on the MODBUS
function (FC) used as below:

= Write Single Coil (FC 05): 1

111 altus

5. CONFIGURATION

= Write Single Register (FC 06): 1

= Write Multiple Coils (FC 15): 1968

= Write Multiple Registers (FC 16): 123

= Mask Write Register (FC 22): 1

= Read/Write Multiple Registers (FC 23): 121

Write Data Range: this field shows the MODBUS write data range configured for each request. The initial address, along
with the read data size will result in the range of write data for each request.

Diagnostic Variable: The MODBUS request diagnostics configured by symbolic mapping or by direct representation, are
stored in variables of type T_DIAG_MODBUS_RTU_MAPPING_I for Master devices and T_DIAG_MODBUS_ETH_CLIENT _I

for Client devices and the mapping by direct representation are in 4-byte and 2-word, which are described in Table 93 ("n" is
the value configured in the %Q Start Address of Diagnostics Area field).

Direct Repre- | Diagnostic variable of type
sentation T_DIAG_MODBUS Size Description
Variable _RTU_MAPPING_1.*

Communication status bits:

%QX(n).0 byStatus. BIT Communication idle (waiting to be exe-
bCommlIdle cuted).
%QX(n).1 byStatus. BIT Active communication.
bCommExecuting
Communication delayed, because the max-
imum number of concurrent requests was
reached. Deferred communications will be
carried out in the same sequence in which
%QX(n).2 byStatus. BIT they were ordered to avoid indeterminacy.
bCommPostponed The time spent in this State is not counted
for the purposes of time-out. The bCom-
mldle and bCommExecuting bits are false
when the bCommPostponed bit is true.
%QX(n).3 byStatus. BIT Communication disabled. The bCommldle
bCommDisabled bit is restarted in this condition.
%QX(n).4 byStatus. BIT f(ljc;glmumcatflolrll terminated previously was
bCommOk eld successfully.
%QX(n).5 byStatus. BIT Communication terminated previously had
bCommError an error. Check error code.
%QX(n).6 byStatus. BIT Not used in MODBUS RTU Master.
bCommAborted
%QX(n).7 byStatus. BIT Reserved

bDiag_7_reserved

Last error code (enabled when bCommError = true):

Informs the possible cause of the last error
in the MODBUS mapping. Consult Table
116 for further details.

Last exception code received by master:

NO_EXCEPTION (0)

MODBUS _EXCEP- FUNCTION_NOT_SUPPORTED (1)
TION (BYTE) MAPPING_NOT_FOUND (2)
ILLEGAL_VALUE (3)
ACCESS_DENIED (128)*
MAPPING_DISABLED (129)*
IGNORE_FRAME (255)*

MASTER_ERROR

% QB(n+1) eLastErrorCode _CODE (BYTE)

% QB(n+2) eLastExceptionCode

112 altus

5. CONFIGURATION

Direct Repre- | Diagnostic variable of type
sentation T _DIAG_MODBUS Size Description
Variable _RTU_MAPPING_1.*
Communication statistics:
% QB(n+3) byDiag_3_reserved BYTE Reserved.
Finished communications counter (with or
without errors). The user can test when
communication has finished testing the
%QW(n+4) wCommCounter WORD variation of this counter. When the ch:/alue
65535 is reached, the counter returns to
Zero.
Finished communications counter (with er-
% QW (n+6) wCommErrorCounter WORD rors). When the value 65535 is reached,
the counter returns to zero.
Table 93: MODBUS Relations Diagnostics
Notes:

Exception Codes: The exception codes presented in this field are values returned by the slave. The definitions of the ex-
ception codes 128, 129 and 255 presented in the table are valid only when using Altus slaves. Slaves from other manufacturers
might use other definitions for each code.

Disabling Variable: variable of Boolean type used to disable, individually, MODBUS requests configured on request tab
via button at the bottom of the window. The request is disabled when the variable, corresponding to the request, is equal to 1,
otherwise the request is enabled.

Last Error Code: The codes for the possible situations that cause an error in the MODBUS communication can be

consulted below:

Code Enumerable Description
1 ERR_EXCEPTION Reply is 'in an exception code (see eLastExceptionCode
= Exception Code).
2 ERR_CRC Reply with invalid CRC.
MODBUS address not found. The address that replied
3 ERR_ADDRESS the request was different than expected. P
4 ERR_FUNCTION Invalid function code. The reply’s function code was dif-
ferent than expected.
5 ERR_FRAME_DATA COUNT ;":Cet ezzlrlnount of data in the reply was different than ex-
7 ERR_NOT_ECHO The reply is not an echo of the request (FC 05 and 06).
8 ERR_REFERENCE_NUMBER Invalid reference number (FC 15 and 16).
9 ERR_INVALID_FRAME_SIZE | Reply shorter than expected.
20 ERR_CONNECTION Error while establishing connection.
21 ERR_SEND Error during transmission stage.
22 ERR_RECEIVE Error during reception stage.
40 ERR_CONNECTION_TIMEOUT | Application level time-out during connection.
41 ERR_SEND_TIMEOUT Application level time-out during transmission.
42 ERR_RECEIVE_TIMEOUT Application level time-out while waiting for reply.
43 ERR_CTS_OFF_TIMEOUT Time-out while waiting CTS = false in transmission.
44 ERR_CTS_ON_TIMEOUT Time-out while waiting CTS = true in transmission.
128 NO_ERROR No error since startup.

Table 94: MODBUS Relations Error Codes

113

altus

5. CONFIGURATION

Differently from other application tasks, when a depuration mark in the MainTask is reached,
the task of a Master MODBUS RTU instance and any other MODBUS task will stop running
at the moment that it tries to perform a writing in a memory area. It occurs in order to keep
the consistency of the memory areas data while a MainTask is not running.

5.5.5.2. MODBUS Master Protocol Configuration for Direct Representation (% Q)

To configure this protocol using direct representation (%Q), the following steps must be performed:

= Configure the general parameters of the MODBUS protocol, such as: communication times and direct representation

variables (%Q) to receive diagnostics.
= Add and configure devices by setting address, direct representation variables (%Q) to disable the relations, communica-

tion time-outs, etc.

= Add and configure MODBUS relations, specifying the data type and MODBUS function, time-outs, direct representation
variables (%Q) to receive diagnostics of the relation and other to receive/write the data, amount of data to be transmitted

and relation polling.

The descriptions of each configuration are listed below in this section.

5.5.5.2.1. General Parameters of MODBUS Master Protocol - setting by Direct Representation (%Q)

The General parameters, found on the home screen of MODBUS protocol configuration (figure below), are defined as:

Y

File Edit View Project Buld Onine Debug Tools Window Help
BEESG o o fBRXIMGIRITISES) o OIE=C=33 |

Devices

=5 MextoRedundant
=[] pevice (x3030)
=[8Y PLC Logic

=} Application
Bil of Materials o B [
Canfiguration and Consumption Used range: %QBSS6, QPESSSS
[+ piagnostic Explorer
[#2) SystemGiLs Devices
#-2) SystemPOUs
#-32 UserGus
#-20) UserPOUs
ffifl Library Manager
@ Redundancy Configuration
= (& Task Configuration
= §8 MainTask
: MainPrg

T Persistentvars
= configuration (Bus)

= [nx3030 (0c3030)
NX4010 (NX4010)
(=[] wxs000 (5000}
L oMETL
= NX5000_01 (NX5000)
Cm NETL
=% comt

*-[f] MODBUS_RTU_Master (MODBUS RTU Master)

B coM2

% NET1
-8 NET2

> 8 X | | Configuration (Bus) MODBUS_RTU_Master X |
E] Master Settings
%Q Start Address of Diagnostics Area

Slave Address

Name

Addii.][Remove | Edt..

Read Data Start Write Data Start Write IEC
Address Read Data Size Read IEC Variable Address. Virite Data Size Variable

U —

L 2 add.. || Remove || Edt..

22 Devices POUs

Figure 57: MODBUS RTU Master Setup Screen

114

5. CONFIGURATION

Direct representation variables (%Q) for the protocol diagnostic:

. . Default .
Configuration Description Value Options
%Q.Start Address of Diag- Inltlfll aeress of the diag- i 0 to 2147483628
nostics Area nostic variables
Size Size of diagnostics area 20 Disabled for editing
Table 95: MODBUS RTU Master Configuration
Notes:

Initial Address of Diagnostics in % Q: this field is limited by the size of outputs variables (%Q) addressable memory of
each CPU, which can be found in section Memory.

Default Value: the factory default value cannot be set to the %Q Start Address of Diagnostics Area field, because the
creation of a Protocol instance may be held at any time on application development. The MasterTool IEC XE software itself
allocate a value, from the range of output variables of direct representation (%Q), not used yet.

The diagnostics and MODBUS protocol commands are described in Table 87.

The communication times of the MODBUS Master protocol, found on the button Advanced... in the configuration screen
are divided into Send Delay and Minimum Interframe, further details are described in section MODBUS Master Protocol
General Parameters — Symbolic Mapping Configuration.

5.5.5.2.2.

Devices Configuration — Configuration for Direct Representation (%Q)

The configuration of the devices, viewed in figure below, comprises the following parameters:

% MODBUS_Device Settings

=

Device Settings

Name MODBUS_Device

Slave Address 1 =
Communication Time-out {ms) |1000 3
Madmum Mumber of Retries |2 =

2192 =
Used range: %0X8192.0..%.GX8195.7

Mapping Disabling

[ok || canecel

Figure 58: Device Configuration

tries

. . Default .
Configuration Description Value Options
Name Name of the instance MODBUS_Device édlell;tfgr’ according to TEC
Slave Address The MODBUS slave ad- 1 0 to 255
dress
Communication Time-out Se.ts the time-out of the ap- 1000 10 t0 65535
(ms) plication level
; Sets the number of retries
Maximum Number of Re- . .
before reporting a communi- 2 0to9

cation error

115

5. CONFIGURATION

Default

Configuration Description Value

Options

. . . Initial address used to dis-
Mapping Disabling able MODBUS relations - 0to 2147483644

Table 96: Device Configuration - MODBUS Master

Notes:

Instance Name: this field is the identifier of the device, which is checked according to IEC 61131-3, i.e. does not allow
spaces, special characters and start with numeral character. It’s limited in 24 characters.

Mapping Disabling: composed of 32 bits, used to disable, individually, the 32 MODBUS relations configured in Device
Mappings space. The relation is disabled when the bit, corresponding to relation, is equal to 1, otherwise, the mapping is
enabled. This field is limited by the size of outputs variables (%Q) addressable memory of each CPU, which can be found in
section Memory.

Default Value: the factory default value cannot be set to the Mapping Disabling field, because the creation of a Protocol
instance may be held at any time on application development. The MasterTool IEC XE software itself allocate a value, from
the range of output variables of direct representation (%Q), not used yet.

For further details on the Slave Address, Communication Time-out and Maximum Number of Retries parameters see notes
in section Devices Configuration — Symbolic Mapping configuration.

5.5.5.2.3. Mappings Configuration — Configuration for Direct Representation (%Q)

The MODBUS relations settings, viewed in the figures below, follow the parameters described in table below:

% Add Mapping l_Jﬂh

Please select Data Type of the Mapping to be added:

| Coi -

Figure 59: MODBUS Data Type

[MODEBUS _Device N
Function Fead Settings
[F{ead Y] Fead Data Start Address Read Data Size

Read Cails (FC 1) 1 ~1 [1 .

~ ~

Used range: 1.1

Palling {ms) Read |EC Variable

100 : 8152.0 £
Mapping Diagnostics Area Used range: %IX8152.0..%1X8152.0
65556 =

Used range: %QB65556..%QB65563

[ok |[Canesl

Figure 60: MODBUS Function

116

]
=
G

\

5. CONFIGURATION

In table below, the number of factory default settings and the values for the column Options, may vary according to the
data type and MODBUS function (FC).

Configuration Description Default Value | Options
Read
Function MODBUS function type Read Write
Read/Write
Mask Write
Polling (ms) Communication period (ms) 100 0 to 3600000
Initial address of the MOD-
Mapping Diagnostics Area | BUS relation diagnostics - 0to 2147483640
(%Q)
Read Data Start Address | il address of the MOD- 1 1 t0 65536
BUS read data
Read Data Size Number of MODBUS read) Depends on the function
data used

Read IEC Variable Initial address of the read ; 0 to 2147483646
variables (%I)

Initial address of the MOD-

Write Data Start Address BUS write data 1 1 to 65536
Write Data Size Number of MODBUS write) Depends on the function
data used

Write IEC Variable Initial address of the write ; 0 to 2147483647
variables (%Q)

Initial address of the vari-
Mask Write IEC Variables | ables for the write mask - 0 to 2147483644
(%Q)

Table 97: Device Mapping

Notes:

Function: the available data types are detailed in the Table 116 and MODBUS functions (FC) are available in the Table
114.

Polling: this parameter indicates how often the communication set for this relation must be executed. At the end of
communication will be awaited a time equal to the configured polling and after, will be performed a new communication as
soon as possible.

Mapping Diagnostics Area: this field is limited by the size of output variables addressable memory (%Q) at CPU, which
can be found in the section Memory. The configured MODBUS relations diagnostics are described in Table 93.

Read/Write Data Size: details of the data size supported by each function are described in the notes of the section
Requests Configuration — Symbolic Mapping Settings.

When accessing the communication data memory is between devices with different endian-
ism (Little-Endian and Big-Endian), inversion of the read/write data may occur. In this case,
the user must adjust the data in the application.

Read IEC Variable: if the MODBUS data type is Coil or Input Status (bit), the initial address of the IEC reading variables
will have the format %IX10.1, for example. However, if the MODBUS data type is Holding Register or Input Register (16
bits), the initial address of the IEC reading variables will be %IW. This field is limited by the size of input variables addressable
memory (%I) at CPU, which can be found in the section Memory.

Write IEC Variable: if the MODBUS data type is Coil, the initial address of the IEC writing variables will have the
format %QX10.1, for example. However, if the MODBUS data type is Holding Register (16 bits), the initial address of the IEC
writing variables will be %QW. This field is limited by the size of output variables addressable memory (% Q) at CPU, which
can be found in the section Memory.

117 altus

—_——

5. CONFIGURATION

Write Mask: the function Mask Write (FC 22), employs a logic between the value already written and the two words that
are configured in this field using %QW(0) for the AND mask and %QW(2) for the OR mask; allowing the user to handle the
word. This field is limited by the size of output variables addressable memory (%(Q) of each CPU, which can be found in the
section Memory.

Default Value: the factory default value cannot be set for the Mapping Diagnostics Area, Read IEC Variable, Write IEC
Variable and Mask Write IEC Variables fields, since the creation of a relation can be performed at any time on application
development. The MasterTool IEC XE software itself allocate a value from the range of direct representation output variables
(%Q), still unused. Factory default cannot be set to the Read/Write Data Size fields, as they will vary according to the
MODBUS data type selected.

Unlike other tasks of an application, when a mark is reached at MainTask debugging, the
MODBUS RTU Master instance task or any other MODBUS task will stop being executed
at the moment it tries to write in the memory area. This occurs in order to maintain data
consistency of memory areas while MainTask is not running.

5.5.6. MODBUS RTU Slave

This protocol is available for the Nexto Series on its serial channels. At selecting this option in MasterTool IEC XE, the
CPU becomes a MODBUS communication slave, allowing the connection with MODBUS RTU master devices.

There are two ways to configure this protocol. The first one makes use of direct representation (%Q), in which the variables
are defined by your address. The second one, through symbolic mapping, where the variables are defined by your name.

Independent of the configuration mode, the steps to insert an instance of the protocol and configure the serial interface
are equal. The procedure to insert an instance of the protocol is found in detail in the MasterTool IEC XE User Manual -
MU299609. The remaining configuration steps are described below for each mode:

» Add the MODBUS RTU Slave Protocol instance to the serial channel COM 1 or COM 2 (or both, in cases of two
communication networks). To execute this procedure see Inserting a Protocol Instance section.

= Configure the serial interface, choosing the communication speed, the RTS/CTS signals behavior, the parity, the stop
bits channel, among others. See Serial Interfaces Configuration section.

5.5.6.1. MODBUS Slave Protocol Configuration via Symbolic Mapping
To configure this protocol using symbolic mapping, you must perform the following steps:

= Configure the MODBUS slave protocol general parameters, as: slave address and communication times (available at the
Slave advanced configurations button).

= Add and configure MODBUS relations, specifying the variable name, MODBUS data type and data initial address.
Automatically, the data size and range will be filled, in accordance to the variable type declared.

5.5.6.1.1. MODBUS Slave Protocol General Parameters — Configuration via Symbolic Mapping
The general parameters, found on the MODBUS protocol initial screen (figure below), are defined as.
Configuration (Bus) m MODBUS_Symbol_RTU_Slave
General Parameters Settings

Slave Address |1 e

Information

Figure 61: MODBUS RTU Slave Configuration Screen

118

Q
=
G

\

5. CONFIGURATION

Configuration

Description

Default

Options

Slave Address

MODBUS slave address

1to 255

Table 98: Slave Configurations

The MODBUS slave protocol communication times, found in the Advanced... button on the configuration screen, are
divided in: Task Cycle, Send Delay and Minimum Interframe as shown in figure below and in table below.

=

MODBUS Advanced Settings
Settings
Task Cycle (ms) 50 3
Send Delay (ms) 0 3

4F

Minimum Inteframe (chars) 3.2

Keep the communication running an CPU stop

[ok || cancel |

Figure 62: Modbus Slave Advanced Configurations

Configuration Description Default Options

Time for the instance execu-

Task Cycle (ms) tion within the cycle, with- 50 20 to 100
out considering its own exe-
cution time

Send Delay (ms) Delay for the transmission 0 0 t0 65535
response

Minimum Interframe Mlnlmum silence time be- 35 3.5 10 100.0

(chars) tween different frames
Enable the MODBUS Sym-

Keep the communication | bol Slave to run while the

running on CPU stop CPU is in STOP or standing Unchecked | Checked or unchecked
in a breakpoint

Table 99: Modbus Slave Advanced Configurations
Notes:

Task Cycle: the user will have to be careful when changing this parameter as it interferes directly in the answer time, data
volume for scan and mainly in the CPU resources balance between communications and other tasks.

Send Delay: the answer to a MODBUS protocol may cause problems in certain moments, as in the RS-485 interface or
other half-duplex. Sometimes there is a delay between the time of the request from the master and the silence on the physical
line (slave delay to put RTS in zero and put the RS-485 in high impedance state). To solve this problem, the master can wait
the determined time in this field before sending the new request. On the opposite case, the first bytes transmitted by the master
could be lost.

Minimum Interframe: the MODBUS standard defines this time as 3.5 characters, but this parameter is configurable in
order to attend the devices which don’t follow the standard.

The MODBUS Slave protocol diagnostics and commands configured, either by symbolic mapping or direct representation,
are stored in T_DIAG_MODBUS_RTU_SLAVE_] variables. For the direct representation mapping, they are also in 4 bytes and

8 words which are described in table below (where “n” is the configured value in the %Q Start Address of Diagnostics Area):

119 altus

——

5. CONFIGURATION

Direct Repre- Diagnostic Variable
sentation T _DIAG_MODBUS Size Description
Variable _RTU_SLAVE _1.*
Diagnostic Bits:
%QX(n).0 tDiag. BIT The slave is in execution mode.
bRunning
%QX(n).1 tDiag. BIT The slave is not in execution (see bit: bln-
bNotRunning terruptedByCommand).
The bit bNotRunning was enabled as the
% QX(n).2 tDiag. BIT slave was interrupted by the user through
blnterruptedByCommand command bits.
%QX(n).3 tDiag. BIT Discontinued diagnosis.
bConfigFailure
% QX (n).4 tDiag. BIT Discontinued diagnosis.
bRXFailure
%QX(n).5 tDiag. BIT Discontinued diagnosis.
bTXFailure
%QX(n).6 tDiag. BIT Discontinued diagnosis.
bModuleFailure
%QX(n).7 tDiag. BIT Reserved.
bDiag_7_reserved
Error codes:
0: there are no errors
1: invalid serial port
2: invalid serial port mode
3: invalid baud rate
4: invalid data bits
5: invalid parity
6: invalid stop bits
7: invalid modem signal parameter
8: invalid UART RX Threshold parameter
9: invalid time-out parameter
10: busy serial port
11: UART hardware error
12: remote hardware error
20: invalid transmission buffer size
% QB(n+1) eErrorCode SERIAL_STATUS 21: invalid signal modem method
(BYTE)
22: CTS time-out = true
23: CTS time-out = false
24: transmission time-out error
30: invalid reception buffer size
31: reception time-out error
32: flow control configured differently
from manual
33: invalid flow control for the configured
serial port
34: data reception not allowed in normal
mode
35: data reception not allowed in extended
mode
36: DCD interruption not allowed

120

5. CONFIGURATION

Direct Repre- Diagnostic Variable
sentation T _DIAG_MODBUS Size Description
Variable _RTU_SLAVE _1.*

37: CTS interruption not allowed
38: DSR interruption not allowed
39: serial port not configured

50: internal error in the serial port

Command bits, automatically initialized:

%QX(n+2).0 tCommand. BIT Stop slave.
bStop

% QX(n+2).1 tCommand. BIT Restart slave.
bRestart

% QX(n+2).2 tCommand. BIT Restart diagnostics statistics (counters).
bResetCounter

%QX(n+2).3 tCommand. BIT Reserved.
bDiag_19_reserved

%QX(n+2).4 tCommand. BIT Reserved.
bDiag_20_reserved

%QX(n+2).5 tCommand. BIT Reserved.
bDiag_21_reserved

%QX(n+2).6 tCommand. BIT Reserved.
bDiag_22_reserved

%QX(n+2).7 tCommand. BIT Reserved.
bDiag_23_reserved

% QB(n+3) byDiag_3_reserved BYTE Reserved.

Communication Statistics:

Counter of normal requests received by the
slave and answered normally. In case of

% QW (n+4) tStat. WORD a broadcast command, this counter is in-
wRXRequests cremented, but it is not transmitted (0 to
65535).

Counter of normal requests received by
the slave and answered with exception
code. In case of a broadcast command,
%QW(n+6) tStat. WORD this counter is incremented, but it isn’t
wTXExceptionResponses transmitted (0 to 65535).

Exception codes:

1: the function code (FC) is legal, but not

supported.

2: relation not found in these MODBUS

data.

3: illegal value for this field.

128: the master/client hasn’t right for

writing or reading.

129: the MODBUS relation is disabled.
Counter of frames received by the slave.
It’s considered a frame something which is
% QW (n+8) tStat. WORD processed and it is followed by a Minimum
wRXFrames Interframe Silence, in other words, an ille-
gal message is also computed (0 to 65535).

121 altus

5. CONFIGURATION

Direct Repre- Diagnostic Variable
sentation T _DIAG_MODBUS Size Description
Variable _RTU_SLAVE_1.*
Illegal request counter. These are frames
which start with address O (broadcast)
%QW(n+10) tStat. WORD gr w1th’ thle I\I/IODBUS slaye 1gidress,
WRXIllegalRequests ut aren't €ga reql..leStS.— mvalid syn-
tax, smaller frames, invalid CRC - (0 to
65535).
Counter of frames with overrun errors dur-
% QW (n+12) tStat. WORD ing reception — UART FIFO or RX line —
wRXOverrunErrors (0 to 655353).
Counter of frames with construction er-
% QW (n+14) tStat. WORD rors, parity or failure during reception (0
wRXIncompleteFrames to 65535).
Counter of CTS time-out error, using the
%QW(n+16) tStat. WORD RTS/CTS handshake, during the transmis-
wCTSTimeOutErrors sion (0 to 65535).
%QW (n+18) tStat. WORD Reserved.
wDiag_18_Reserved

Table 100: MODBUS RTU Slave Diagnostic

Note:
Counters: all MODBUS RTU Slave diagnostics counters return to zero when the limit value 65535 is exceeded.

5.5.6.1.2. Configuration of the Relations — Symbolic Mapping Setting

The MODBUS relations configuration, showed on figure below, follows the parameters described on table below:

Mappings

Absolute Data
Start Address

Data Start

Address LTS

Value Variable Data Type Data Range

Figure 63: MODBUS Data Mappings Screen

Configuration Description Default Options
Value Variable Symbolic variable name - Name of a variable declared
in a program or GVL

Coil

Data Type MODBUS data type - Input Status
Holding Register
Input Register

Data Start Address zfgs?BUS data initial ad- - 1 t0 65536

122

altus

5. CONFIGURATION

Configuration Description Default Options
Absolute initial address of
LU LI B G G MODBUS data according to - -
dress .
1ts type
Data Size MODBUS data size - 1 to 65536
Data Range Data address range config-))
ured
Table 101: MODBUS Mappings Configurations
Notes:

Value Variable: this field is used to specify a symbolic variable in MODBUS relation.
Data Type: this field is used to specify the data type used in the MODBUS relation.

Data Type Size [bits] | Description
Coil 1 Digital output that can be read or written.
Input Status 1 Digital input (read only).
Holding Register 16 Analog output that can be read or written.
Input Register 16 Analog input (read only).

Table 102: MODBUS data types supported by Nexto CPUs

Data Start Address: data initial address of the MODBUS relation.

Data Size: the Data Size value sets the maximum amount of data that a MODBUS relation can access from the initial
address. Thus, in order to read a continuous range of addresses, it is necessary that all addresses are declared in a single
relation. This field varies according to the configured type of MODBUS data.

Data Range: this field shows the user the memory address range used by the MODBUS relation.

Differently from other application tasks, when a depuration mark in the MainTask is reached,
the task of a MODBUS RTU Slave instance and any other MODBUS task will stop running
at the moment that it tries to perform a writing in a memory area. It occurs in order to keep
the consistency of the memory areas data while a MainTask is not running.

5.5.6.2. MODBUS Slave Protocol Configuration via Direct Representation (% Q)

To configure this protocol using Direct Representation (%Q), you must perform the following steps:

= Configure the general parameters of MODBUS slave protocol, such as: communication times, address and direct repre-
sentation variables (%Q) to receive diagnostics and control relations.

= Add and configure MODBUS relations, specifying the MODBUS data type, direct representation variables (%Q) to
receive/write the data and amount of data to communicate.

The descriptions of each setting are listed below, in this section.

5.5.6.2.1. General Parameters of MODBUS Slave Protocol — Configuration via Direct Representation (%Q)

The general parameters, found on the home screen of MODBUS protocol configuration (figure below), are defined as:

123

]
=
G

\

5. CONFIGURATION

File Edit View Project Buld Online Debug Tools Window Help v
- AN | = o)A |

=== 8 4] Oole dy &

Devices > 3 x Configuration (Bus) (7] MODBUS_RTU_Slave x -
=) Mexto ¥} slave Settings

= [Device (x3030) %Q Start Address of Diagnostics Area SlaveAddress
=-E10 pLC Logic 66922 21 1 B
=1} Application Size Mapping Disabling
[il of Materials o0

Configuration and Consumption Used range: %QB66922.,%QB66941 Used range: %QX8192.0..%QX8195.7

@ Diagnostic Explorer
%) SystemGyls
+-2) SystemPOUs
+-2 UserGVLs
+-2D UserPOUSs

i) Library Manager
= @ Task Configuration

= 8 MainTask

Slave Mappings

| | DataType Data Start Address Data Size IEC Variable -

m
m

1
2

3

& MainPrg 4

= m Configuration (Bus) 5
= (i nx3030 (Nx3030) 3
=% com1 7
[T MODBUS_RTU_Slave (MODBUS RTU Siave) 8

B oMz s

B NET1
. NET2

« n r

& Devices |) POUs 3%

|}JE Messages - Total 0 error(s), 0 warning(s), 0 message(s)

Lastbuid: € 0 & 0 Precompile; o Project user: (nobody) 4]

Figure 64: MODBUS RTU Slave Configuration Screen by Direct Representation

Address and direct representation variables (%Q) to control relations and diagnostics:

Configuration Description Default Value | Options
%Q.Start Address of Diag- Imtlgl adc.lress of the diag-) 0 to 2147483628
nostics Area nostic variables
Size Size of diagnostics area - Disabled for editing
Slave Address MODBUS slave address 1 1 to 255
q . 5 Initial address used to dis-
Mapping Disabling able MODBUS relations - 0 to 2147483644
Table 103: Address and Direct Representation Variables Settings
Notes:

% Q Start Address of Diagnostics Area: this field is limited by the size of output variables addressable memory (%Q) of
each CPU, which can be found in section Memory.

Slave Address: it is important to note that the Slave accepts requests broadcast, when the master sends a command with
the address set to zero. Moreover, in accordance with standard MODBUS, the valid address range for slaves is 1 to 247. The
addresses 248 to 255 are reserved.

Mapping Disabling: composed of 32 bits, used to disable, individually, the 32 MODBUS relations configured in Slave
Mappings space. The relation is disabled when the corresponding bit is equal to 1, otherwise, the mapping is enabled. This
field is limited by the size of output variables addressable memory (%Q) of each CPU, which can be found on Memory section.

Default Value: the factory default value cannot be set for the %Q Start Address of Diagnostics Area and Mapping Dis-
abling fields, since the creation of a relation can be performed at any time on application development. The MasterTool IEC
XE software itself allocate a value from the range of direct representation output variables (%Q), still unused.

The MODBUS Slave by Direct Representation protocol stops communicating while the CPU is in STOP or stopped at a
breakpoint.

The MODBUS protocol diagnostics and commands are described in the Table 100.

The communication times of the MODBUS Slave protocol, found on the button Advanced... of the configuration screen,
are described in Table 99.

5.5.6.2.2. Mappings Configuration — Configuration via Direct Representation (%Q)

The MODBUS relations settings, viewed in the figures below, follow the parameters described in table below:

124 ¢

[
G

\

5. CONFIGURATION

Please select Data Type of the Mapping to be added:

Coil

F . MODBUS_RTU_Slav

Mapping Settings
Data Start Address
1

|EC Warable
8196

Used rmnge: “LOXE196.0. W0XE196.7

[] Read-only

Data Size

Used range: 1.8

oK

] [Cancel

Figure 66: Configuring the MODBUS Relation

Configuration Description gzlff::lt Options
Coil (1 bit)
Data Type MODBUS data type Coil Holding Register (16 bits)
Input Register (16 bits)
Input Status (1 bit)
Data Start Address Initial address of the MOD- 1 1 to 65536
BUS data
Data Size Number of MODBUS data - 1 to 65536
IEC Variable Initial address of variables - 0 to 2147483647
(%Q)
Read-only Only allows reading Disabled Enabled or disabled

Notes:

Table 104: Slave Mappings

Options: the values written in the column Options may vary according with the configured MODBUS data.

Data Size: the value of Data Size defines the maximum amount of data that a MODBUS relation can access, from the
initial address. Thus, to read a continuous address range, it is necessary that all addresses are declared in a single interface.

125

altus

——

5. CONFIGURATION

This field varies with the MODBUS data type configured, i.e. when selected Coil or Input Status, the Data Size field must be a
multiple of eight. Also, the maximum amount must not exceed the size of output addressable memory and not assign the same
values used in the application.

When accessing the communication data memory is between devices with different endian-
ism (Little-Endian and Big-Endian), inversion of the read/write data may occur. In this case,
the user must adjust the data in the application.

IEC Variable: in case the MODBUS data type is Coil or Input Status (bit), the IEC variables initial address will be in the
format %QX10.1. However, if the MODBUS data type is Holding Register or Input Register (16 bits), the IEC variables initial
address will be in the format %QW. This field is limited by the memory size of the addressable output variables (%Q) from
each CPU, which can be seen on Memory section.

Read-only: when enabled, it only allows the communication master to read the variable data. It does not allow the writing.
This option is valid for the writing functions only.

Default Value: the default value cannot be defined for the IEC Variable field since the creation of a relation can be
performed at any time on application development. The MasterTool IEC XE software itself allocate a value from the range of
direct representation output variables (%Q), still unused. The default cannot be defined for the Data Size field as it will vary
according to selected MODBUS data type.

In the previously defined relations, the maximum MODBUS data size can be 65535 (maximum value configured in the
Data Size field). However, the request which arrives in the MODBUS RTU Slave must address a subgroup of this mapping
and this group must have, at most, the data size depending on the function code which is defined below:

= Read Coils (FC 1): 2000

= Read Input Status (FC 2): 2000

= Read Holding Registers (FC 3): 125

= Read Input Registers (FC 4): 125

= Write Single Coil (FC 5): 1

= Write Single Holding register (FC 6): 1
= Force Multiple Coils (FC 15): 1968

= Write Holding Registers (FC 16): 123
= Mask Write Register (FC 22): 1

= Read/Write Holding Registers (FC 23):

e Read: 121
e Write: 121

Differently from other application tasks, when a depuration mark in the MainTask is reached,
the task of a Slave MODBUS RTU instance and any other MODBUS task will stop running
at the moment that it tries to perform a writing in a memory area. It occurs in order to keep
the consistency of the memory areas data while a MainTask is not running.

5.5.7. MODBUS Ethernet

The multi-master communication allows the Nexto CPUs to read or write MODBUS variables in other controllers or HMIs
compatible with the MODBUS TCP protocol or MODBUS RTU via TCP. The Nexto CPU can, at the same time, be client and
server in the same communication network, or even have more instances associated to the Ethernet interface. It does not matter
if they are MODBUS TCP or MODBUS RTU via TCP, as described on Table 67.

The figure below represents some of the communication possibilities using the MODBUS TCP protocol simultaneously
with the MODBUS RTU via TCP protocol.

126

Q
=
G

\

5. CONFIGURATION

Supervision System
MODBUS TCP

GATEWAY

MODBUS TCP
MODBUS RTU

O
O

HX30x0

Ethernet Network

MODBUS RTU Network MultiDrop VO MODBUS RTU

<) MODBUS TCP messages with HX30X0 Server Mode
ﬁ MODBUS TCP messages with HX30X0 Client Mode

Figure 67: MODBUS TCP Communication Network

The association of MODBUS variables with CPU symbolic variables is made by the user through relations definition via
MasterTool IEC XE configuration tool. It’s possible to configure up to 32 relations for the server mode and up to 128 relations
for the client mode. The relations in client mode, on the other hand, must respect the data maximum size of a MODBUS
function: 125 registers (input registers or holding registers) or 2000 bits (coils or input status). This information is detailed in
the description of each protocol.

All relations, in client mode or server mode, can be disabled through direct representation variables (%Q) identified as
Disabling Variables by MasterTool IEC XE. The disabling may occur through general bits which affect all relations of an
operation mode, or through specific bits, affecting specific relations.

For the server mode relations, IP addresses clusters can be defined with writing and reading allowance, called filters. This
is made through the definition of an IP network address and of a subnet mask, resulting in a group of client IPs which can
read and write in the relation variables. Reading/writing functions are filtered, in other words, they cannot be requested by any
client, independent from the IP address. This information is detailed in the MODBUS Ethernet Server protocol.

When the MODBUS TCP protocol is used in the client mode, it’s possible to use the multiple requests feature, with the
same TCP connection to accelerate the communication with the servers. When this feature isn’t desired or isn’t supported by
the server, it can be disabled (relation level action). It is important to emphasize that the maximum number of TCP connections
between the client and server is 63. If some parameters are changed, inactive communications can be closed, which allows the
opening of new connections.

The tables below bring, respectively, the complete list of data and MODBUS functions supported by the Nexto CPUs.

127

Q
=
G

\

5. CONFIGURATION

Data Type Size [bits] | Description
Coil 1 Digital output that can be read or written.
Input Status 1 Digital input (read only).
Holding Register 16 Analog output that can be read or written.
Input Register 16 Analog input (read only).

Table 105: MODBUS data types supported by Nexto CPUs

Code
DEC | HEX Description
1 0x01 | Read Coils (FC 01)

2 0x02 | Read Input Status (FC 02)

3 0x03 | Read Holding Registers (FC 03)

4 0x04 | Read Input Registers (FC 04)
5

6

0x05 | Write Single Coil (FC 05)

0x06 | Write Single Holding Register (FC 06)

15 0xOF | Write Multiple Coils (FC 15)

16 0x10 | Write Multiple Holding Registers (FC 16)

22 0x16 | Mask Write Holding Register (FC 22)

23 0x17 | Read/Write Multiple Holding Registers (FC 23)

Table 106: MODBUS Functions Supported by Nexto CPUs

Independent of the configuration mode, the steps to insert an instance of the protocol and configure the Ethernet interface
are equal. The remaining configuration steps are described below for each modality.

= Add one or more instances of the MODBUS Ethernet client or server protocol to Ethernet channel. To perform this
procedure, refer to the section Inserting a Protocol Instance.
= Configure the Ethernet interface. To perform this procedure, see section Ethernet Interfaces Configuration.

5.5.8. MODBUS Ethernet Client

This protocol is available for all Nexto Series CPUs on its Ethernet channels. When selecting this option at MasterTool
IEC XE, the CPU becomes a MODBUS communication client, allowing the access to other devices with the same protocol,
when it’s in execution mode (Run Mode).

There are two ways to configure this protocol. The first one makes use of direct representation (%Q), in which the variables
are defined by your address. The second one, through symbolic mapping, where the variables are defined by your name.

The procedure to insert an instance of the protocol is found in detail in the MasterTool IEC XE User Manual — MU299609
or on Inserting a Protocol Instance section.

5.5.8.1. MODBUS Ethernet Client Configuration via Symbolic Mapping

To configure this protocol using Symbolic Mapping, it’s necessary to execute the following steps:

= Configure the general parameters of MODBUS protocol client, with the Transmission Control Protocol (TCP) or RTU
via TCP.

= Add and configure devices by setting IP address, port, address of the slave and time-out of communication (available on
the Advanced Settings button of the device).

= Add and configure the MODBUS mappings, specifying the variable name, data type, data initial address, data size and
variable that will receive the quality data.

= Add and configure the MODBUS request, specifying the desired function, the scan time of the request, the initial address
(read/write), the size of the data (read/write), the variable that will receive the data quality and the variable responsible
for disabling the request.

128 altus

5. CONFIGURATION

5.5.8.1.1. MODBUS Client Protocol General Parameters — Configuration via Symbolic Mapping

The general parameters, found on the MODBUS protocol configuration initial screen (figure below), are defined as:

Configuration (Bus) ﬁ MODBUS_Symbol_Client
Settings
Connection Mode [TCP v]

RTU over TCP

e

Figure 68: MODBUS Client General Parameters Configuration Screen

Configuration Description Default Options
Connection Mode Protocol selection TCP RTU via TCP
TCP

Table 107: MODBUS Client General Configurations

The MODBUS Client protocol diagnostics and commands configured, either by symbolic mapping or direct representation,
are stored in T_DIAG_MODBUS_ETH_CLIENT_1 variables. For the direct representation mapping, they are also in 4 bytes

and 8 words which are described in table below (where “n” is the configured value in the %Q Start Address of Diagnostics
Area):

Direct Repre- Diagnostic Variable
sentation T_DIAG_MODBUS Size Description
Variable _ETH_CLIENT 1.*
Diagnostic Bits:
%QX(n).0 tDiag. BIT The client is in execution mode.
bRunning
tDiag. The client is not in execution mode (see bit
%QX(m).1 bNotRunning BIT bInterruptedByCommand).
) The bit bNotRunning was enabled, as the
%QX(n).2 tDiag. BIT client was interrupted by the user through
blnterruptedByCommand command bits.
%QX(n).3 tDiag. BIT Discontinued diagnostics.
bConfigFailure
%QX(n).4 tDiag. BIT Discontinued diagnostics.
bRXFailure
%QX(n).5 tDiag. BIT Discontinued diagnostics.
bTXFailure
%QX(n).6 tDiag. BIT Indicates if there is failure in the module or
¢) bModuleFailure the module is not present.
%QX(n).7 tDiag BIT Indicates that all devices configured in the
(4 . : . . .
bAllDevicesCommPFailure Client are in failure.
% QB(n+1) byDiag_1_reserved BYTE Reserved.
Command bits, automatically initialized:
%QX(n+2).0 tCommand. BIT Stop client.
bStop

5. CONFIGURATION

Direct Repre- Diagnostic Variable
sentation T _DIAG_MODBUS Size Description
Variable _ETH_CLIENT_1.*
%QX(n+2).1 tCommand. BIT Restart client.
bRestart
%QX(n+2).2 tCommand. BIT Restart the diagnostic statistics (counters).
bResetCounter
%QX(n+2).3 tCommand. BIT Reserved.
bDiag_19_reserved
%QX(n+2).4 tCommand. BIT Reserved.
bDiag_20_reserved
% QX(n+2).5 tCommand. BIT Reserved.
bDiag_21_reserved
%QX(n+2).6 tCommand. BIT Reserved.
bDiag_22_reserved
%QX(n+2).7 tCommand. BIT Reserved.
bDiag_23_reserved
% QB(n+3) byDiag_3_reserved BYTE Reserved.
Communication Statistics:
Counter of number of requests transmitted
% QW (n+4 tStat. WORD .
QW (n+d) WTXRequests by the client (0 to 65535).
%QW(n+6) tStat. WORD Cl(')unte(r) of 2(5)2?2511 answers received by the
wRXNormalResponses client (0 to)-
%QW(n+8) tStat. WORD Cog;;rs of answers with exception code (0
wRXExceptionResponses to).
Counter of illegal answers received by the
% QW (n+10) tStat. WORD client — invalid syntax, invalid CRC or not
wRXIllegalResponses enough bytes received (0 to 65535).
%QW(n+12) tStat. WORD Reserved.
wDiag_12_reserved
%QW(n+14) tStat. WORD Reserved.
wDiag_14_reserved
%QW(n+16) tStat. WORD Reserved.
wDiag_16_reserved
%QW(n+18) tStat. WORD Reserved.
wDiag_18_Reserved
Table 108: MODBUS Client Protocol Diagnostics
Note:

Counters: all MODBUS TCP Client diagnostics counters return to zero when the limit value 65535 is exceeded.

5.5.8.1.2. Device Configuration — Configuration via Symbolic Mapping

The devices configuration, shown on figure below, follows the following parameters:

130

altus

5. CONFIGURATION

Configuration (Bus) [{] MODBUS_ Device X

Mappings Settings
IP Address 0.0 .0 .0 |Q
Requests n
TCP Port 502 =

General Parameters 1 B

Advanced...

Slave Address

Figure 69: Device General Parameters Settings

Configuration Description Default Options
IP Address Server IP address 0.0.0.0 1.0.0.1 to 223.255.255.255
TCP Port TCP port 502 2 to 65534
Slave Address MODBUS Slave address 1 0to 255

Table 109: MODBUS Client General Configurations

Notes:
IP Address: IP address of Modbus Server Device.

TCP Port: if there are multiple instances of the protocol added in a single Ethernet interface, different TCP ports must be
selected for each instance. Some TCP ports, among the possibilities mentioned above, are reserved and therefore cannot be
used. See table Reserved TCP/UDP ports.

Slave address: according to the MODBUS standard, the valid address range for slaves is 0 to 247, where addresses 248 to
255 are reserved. When the master sends a command of writing with the address set to zero, it is performing broadcast requests
on the network.

The parameters in the advanced settings of the MODBUS Client device, found on the button Advanced... in the General
Parameters tab are divided into: Maximum Simultaneous Requests, Communication Time-out, Mode of Connection Time-out
and Inactive Time.

by the client

time of (s):

Configuration Description Default Options
. . Number of simultaneous re-
Maximum Simultaneous .
quest the client can ask from 1 1to8
Request
the server
Communication Time-out | Application level time-out in 3000 10 to 65535
(ms) ms
Connection is Connection is closed after a
Defines when the connec- | closed after | (ime-out.
Mode tion with the server finished | an inactive

Connection is closed at the
end of each communica-

10 to 3600. tion.
Connection is closed after
an inactive time of (s): 10
to 3600.
Inactive Time (s) Inactivity time 10 3600

Table 110: MODBUS Client Advanced Configurations

131

altus

5. CONFIGURATION

Notes:

Maximum Simultaneous Requests: it is used with a high scan cycle. This parameter is fixed in 1 (not editable) when the
configured protocol is MODBUS RTU over TCP.

Communication Time-out: the Communication time-out is the time that the client will wait for a server response to the
request. For a MODBUS Client device, two variables of the system must be considered: the time the server takes to process
a request and the response sending delay in case it is set in the server. It is recommended that the time-out is equal or higher

than twice the sum of these parameters. For further information, check Communication Performance section.
Mode: defines when the connection with the server is finished by the client. Below follows the available options:

= Connection is closed after a time-out or Connection is never closed in normal situations: Those options presents the same
behavior of Client, close the connection due non response of a request by the Server before reaching the Communication

Time-out.

= Connection is closed at the end of each communication: The connection is closed by the Client after finish each request.

= Connection is closed after an Inactive Time: The connection will be closed by the Client if it reach the Inactive Time
without performing a request to the Server.

Inactive Time: inactivity connection time.

5.5.8.1.3. Mappings Configuration — Configuration via Symbolic Mapping

The MODBUS relations configuration, showed on figure below, follows the parameters described on table below:

/ @ Configuration (Bus) ' [{f] MODBUS_Device X |

Mappings

Requests

Value Variable Data Type

Data Start
Address

Data Size

Data Range

Quality

Varizble

General Parameters

4

Figure 70: MODBUS Data Type

132

5. CONFIGURATION

Configuration Description Default Options

Name of a variable declared
in a program or GVL

Coil - Write (1 bit)

Coil - Read (1 bit)

Holding Register - Write
Data Type MODBUS data type - (16 bits)
Holding Register - Read (16
bits)
Holding Register — Mask
AND (16 bits)
Holding Register — Mask
OR (16 bits)
Input Register (16 bits)
Input Status (1 bit)

Value Variable Symbolic variable name -

Initial address of the MOD-

Data Start Address BUS data - 1 to 65536
Data Size Size of the MODBUS data - 1 to 65536
Data Range The address range of config-))

ured data

Table 111: MODBUS Mappings Settings

Notes:
Value Variable: this field is used to specify a symbolic variable in MODBUS relation.
Data type: this field is used to specify the data type used in the MODBUS relation.

Data Type Size [bits] | Description
Coil - Write 1 Writing digital output.
Coil - Read 1 Reading digital output.
Holding Register - Write 16 Writing analog output.
Holding Register - Read 16 Reading analog output.
Holding Register - Mask AND 16 I/?;;l:g output which can be read or written with AND
Holding Register - Mask OR 16 Analog output which can be read or written with OR
mask.
Input Register 16 Analog input which can be only read.
Input Status 1 Digital input which can be only read.

Table 112: Data Types Supported in MODBUS

Data Start Address: Data initial address of a MODBUS mapping.

Data Size: The size value specifies the maximum amount of data that a MODBUS interface can access, from the initial
address. Thus, to read a continuous address range, it is necessary that all addresses are declared in a single interface. This field
varies with the MODBUS data type configured.

Data Range: This field shows to the user the memory address range used by the MODBUS interface.

133 altus

5. CONFIGURATION

5.5.8.1.4. Requests Configuration — Configuration via Symbolic Mapping

The configuration of the MODBUS requests, viewed in figure below, follow the parameters described in table below:

‘@ Configuration (Bus) Py [} MODBUS_Device x
Mappings Function Paling (ms) Read Data Read Data Read Data Write Data Write Data Write Data Diagnostic Disabling
Code oling {ms, Start Address Size Range Start Address Size Range Variable Variable
Requests -
General Parameters
Diagnostics Variable Type NXMODBUS_DIAGNOSTIC_STRUCTS.T_DIAG_MODBUS_ETH_MAPPING_L [Generate Diagnostics Variables | | Generate Disabling Variables

Figure 71: MODBUS Data Request Screen

Configuration Description Default Value | Options

01 — Read Coils

02 — Read Input Status

03 — Read Holding Regis-
Function Code MODBUS function type - ters

04 — Read Input Registers
05 — Write Single Coil

06 — Write Single Register
15 — Write Multiple Coils
16 — Write Multiple Regis-
ters

22 — Mask Write Register
23 — Read/Write Multiple

Registers
Polling (ms) Communication period (ms) 100 0 to 3600000
Initial address of the MOD-
Read Data Start Address BUS read data - 1 to 65536
Read Data Size Size of MODBUS Read data - Depends on the function

used

Read Data Range MODBUS Read data ad- ; 0t 2147483646
dress range

Initial address of the MOD-

Write Data Start Address BUS write data - 1 to 65536

Write Data Size Size of MODBUS Write) Depends on the function
data used

Write Data Range MODBUS Write data ad- - 0 to 2147483647
dress range

Diagnostic Variable Diagnostic variable name - Name of a variable declared

in a program or GVL

134 altus

5. CONFIGURATION

Configuration Description Default Value | Options

Field for symbolic variable
used to disable, individually,
MODBUS requests config-

Disabling Variable Variable used to disable) ured. This variable must be
g MODBUS relation of type BOOL. The variable
can be simple or array el-
ement and can be in struc-
tures.
Table 113: MODBUS Relations Configuration
Notes:

Setting: the number of factory default settings and the values for the column Options may vary according to the data type
and MODBUS function (FC).

Function Code: MODBUS (FC) functions available are the following:

Code
DEC | HEX Description
1 0x01 | Read Coils (FC 01)

2 0x02 | Read Input Status (FC 02)

3 0x03 | Read Holding Registers (FC 03)

4 0x04 | Read Input Registers (FC 04)
5

6

0x05 | Write Single Coil (FC 05)

0x06 | Write Single Holding Register (FC 06)

15 0xOF | Write Multiple Coils (FC 15)

16 0x10 | Write Multiple Holding Registers (FC 16)

22 0x16 | Mask Write Holding Register (FC 22)

23 0x17 | Read/Write Multiple Holding Registers (FC 23)

Table 114: MODBUS Functions Supported by Nexto CPUs

Polling: this parameter indicates how often the communication set for this request must be performed. By the end of a
communication will be awaited a time equal to the value configured in the field polling and after that, a new communication
will be executed.

Read Data Start Address: field for the initial address of the MODBUS read data.

Read Data Size: the minimum value for the read data size is 1 and the maximum value depends on the MODBUS function
(FC) used as below:

= Read Coils (FC 01): 2000

= Read Input Status (FC 02): 2000

= Read Holding Registers (FC 03): 125

= Read Input Registers (FC 04): 125

= Read/Write Multiple Registers (FC 23): 121

Read Data Range: this field shows the MODBUS read data range configured for each request. The initial address, along
with the read data size will result in the range of read data for each request.

Write Data Start Address: field for the initial address of the MODBUS write data.

Write Data Size: the minimum value for the write data size is 1 and the maximum value depends on the MODBUS
function (FC) used as below:

= Write Single Coil (FC 05): 1
= Write Single Register (FC 06): 1
= Write Multiple Coils (FC 15): 1968

135 altus

5. CONFIGURATION

= Write Multiple Registers (FC 16): 123
= Mask Write Register (FC 22): 1
= Read/Write Multiple Registers (FC 23): 121

Write Data Range: this field shows the MODBUS write data range configured for each request. The initial address, along
with the read data size will result in the range of write data for each request.

Diagnostic Variable: The MODBUS request diagnostics configured by symbolic mapping or by direct representation, are
stored in variables of type T_DIAG_MODBUS_RTU_MAPPING _I for Master devices and T_DIAG_MODBUS_ETH_CLIENT _1

for Client devices and the mapping by direct representation are in 4-byte and 2-word, which are described in Table 93 ("n" is
the value configured in the %Q Start Address of Diagnostics Area field).

Direct Rep- | Diagnostic Variable
resentation T _DIAG_MODBUS Size Description
Variable _ETH_MAPPING_1.*

Communication Status Bits:

%QX(n).0 byStatus BIT Communication idle (waiting to be exe-
(4 B :
bCommldle cuted).
%QX(n).1 byStatus. BIT Active communication.
bCommExecuting

Communication deferred, because the
maximum number of concurrent requests
was reached. Deferred communications
will be carried out in the same sequence

%QX(n).2 byStatus. BIT in which they were ordered to avoid in-

¢) bCommPostponed determinacy. The time spent in this State

is not counted for the purposes of time-
out. The bCommldle and bCommExecut-
ing bits are false when the bCommPost-
poned bit is true.

%QX(m).3 byStatus. BIT Communication disabled. The bCommldle

¢) bCommDisabled bit is restarted in this condition.

%QX(n).4 byStatus. BIT Communication terminated previously was

¢) bCommOk held successfully.

%QX(n).5 byStatus. BIT Communication terminated previously had

¢) bCommError an error. Check error code.

%QX(n).6 byStatus. BIT Previously terminated communication was

¢) bCommAborted interrupted due to connection failure.

%QX(n).7 byStatus. BIT Reserved.

bDiag_7_reserved

Last error code (enabled when bCommError = true):

Informs the possible cause of the last error
in the MODBUS mapping. Consult Table
116 for further details.

Last exception code received by master:

NO_EXCEPTION (0)

MODBUS _EXCEP- FUNCTION_NOT_SUPPORTED (1)
TION (BYTE) MAPPING_NOT_FOUND (2)
ILLEGAL_VALUE (3)
ACCESS_DENIED (128)*
MAPPING_DISABLED (129)*
IGNORE_FRAME (255)*

MASTER_ERROR

% QB(n+1) eLastErrorCode _CODE (BYTE)

% QB(n+2) eLastExceptionCode

136 altus

5. CONFIGURATION

Direct Rep- | Diagnostic Variable

resentation T _DIAG_MODBUS Size Description

Variable _ETH_MAPPING_1.*

Communication statistics:

% QB(n+3) byDiag_3_reserved BYTE Reserved.
Communications counter terminated, with
or without errors. The user can test when
communication has finished testing the

%QW(n+4) wCommCounter WORD variation of this counter. When the ch:/alue
65535 is reached, the counter returns to
Zero.
Communications counter terminated with

% QW (n+6) wCommErrorCounter WORD errors. When the value 65535 is reached,
the counter returns to zero.

Table 115: MODBUS Client Relations Diagnostics
Notes:

Exception Codes: the exception codes show in this filed is the server returned values. The definitions of the exception
codes 128, 129 and 255 are valid only with Altus slaves. For slaves from other manufacturers these exception codes can have

different meanings.

Disabling Variable: field for the variable used to disable MODBUS requests individually configured within requests. The
request is disabled when the variable, corresponding to the request, is equal to 1, otherwise the request is enabled.

Last Error Code: The codes for the possible situations that cause an error in the MODBUS communication can be

consulted below:

Code Enumerable Description

1 ERR_EXCEPTION li%)zelsﬁlgnagoe;(ec;:pnon code (see eLastExceptionCode

2 ERR_CRC Reply with invalid CRC.
MODBUS address not found. The address that replied

3 ERR_ADDRESS the request was different than expected. P
Invalid function code. The reply’s function code was dif-

4 ERR_FUNCTION ferent than expected. i

5 ERR_FRAME_DATA_COUNT gg; ;;loum of data in the reply was different than ex-

7 ERR_NOT_ECHO The reply is not an echo of the request (FC 05 and 06).

8 ERR_REFERENCE_NUMBER Invalid reference number (FC 15 and 16).

9 ERR_INVALID_FRAME_SIZE Reply shorter than expected.

20 ERR_CONNECTION Error while establishing connection.

21 ERR_SEND Error during transmission stage.

22 ERR_RECEIVE Error during reception stage.

40 ERR_CONNECTION_TIMEOUT | Application level time-out during connection.

41 ERR_SEND_TIMEOUT Application level time-out during transmission.

42 ERR_RECEIVE_TIMEOUT Application level time-out while waiting for reply.

43 ERR_CTS_OFF_TIMEOUT Time-out while waiting CTS = false in transmission.

44 ERR_CTS_ON_TIMEOUT Time-out while waiting CTS = true in transmission.

128 NO_ERROR No error since startup.

Table 116: MODBUS Relations Error Codes

137

altus

5. CONFIGURATION

Unlike other tasks of an application, when a mark is reached at MainTask debugging, the
MODBUS Ethernet Client instance task or any other MODBUS task will stop being executed
at the moment it tries to write in the memory area. This occurs in order to maintain data
consistency of memory areas while MainTask is not running.

5.5.8.2. MODBUS Ethernet Client configuration via Direct Representation (% Q)

To configure this protocol using direct representation (%Q), the following steps must be performed:

= Configure the general parameters of the MODBUS protocol, such as: communication times and direct representation
variables (%Q) to receive diagnostics.
= Add and configure devices by setting address, direct representation variables (%Q) to disable the relations, communica-

tion time-outs, etc.

» Add and configure MODBUS relations, specifying the data type and MODBUS function, time-outs, direct representation
variables (%Q) to receive diagnostics of the relation and other to receive/write the data, amount of data to be transmitted
and relation polling.

The descriptions of each configuration are listed below in this section.

5.5.8.2.1. General parameters of MODBUS Protocol Client - configuration for Direct Representation (%Q)

Fle Edit View Project Buld Online Debug Tools Window Help

B E #h 8

Devices

=] Nexto
= Device (Nx3030)
=20 pLC Logic
= I} Application
[Bil of Materials
Configuration and Cansumption
@ Diagnostic Explorer
+ 1) SystemGVLs
#-1) SystemPOUs
#12) UserGyLs
+12) UserPOUs
i Library Manager
= @ Task Configuration
= @ MainTask
& MainPrg
=- [Configuration (Bus)
=i nx3030 (ux3030)
3 com1
2 com2
= % METL
[:l MoDBUS_Client {MODBUS Client)
% nET2

dh

Configuration {Bus) [{ mopBuS _dient x
Client Settings
% Start Address of Diagnostics Ares
66922 |

@ RTU via TCP

Size -
B @ TCP
Used range: %QB56922.,%QB66341

Devices

The General parameters, found on the home screen of MODBUS protocol configuration (figure below), are defined as:

Name Destination IP

TCP Port

Remove Edit..

Read Data Start

Address Read Data Size

Data Type Slave Address

Write Data Start Write IEC
0
Address Write Data Size Variable

0 m

5 Devices | [POUs

[B] Messages - Total 0 emor(s), 0 warning(s), 0 messagels)

Add... Remove Edit...

Last build: € 0 & 0

Project user: (nobody)

Figure 72: MODBUS Client Setup Screen

138

Q

\

(S

5. CONFIGURATION

Protocol selection and direct representation variables (%Q) for diagnostics:

: . Default .
Setting Description Value Options
%Q.Start Address of Diag- In1t1?11 aeress of the diag- i 0 to 2147483628
nostics Area nostic variables
Size Size of diagnostics 20 Disabled for editing
Protocol Protocol selection TCP RTU via TCP
TCP

Table 117: MODBUS Client settings

Notes:

% Q Start Address of Diagnostics Area: this field is limited by the size of output variables addressable memory (%Q) at
CPU, which can be found in section Memory.

Default Value: the default value cannot be defined for the %Q Start Address of Diagnostics Area field since the creation
of a protocol instance can be made at any moment within the application development. The MasterTool IEC XE software itself
allocate a value from the range of direct representation output variables (%Q), still unused.

The diagnostics and MODBUS commands are described in Table 108.

5.5.8.2.2. Device Configuration — Configuration via Direct Representation (%Q)

The configuration of the devices, viewed in figure below, comprises the following parameters:

Device Settings

MName MODBUS_Device
Destination [P 0 .0 .0
TCP Port 502

Mapping Disabling |8132
Used range: %0OX81592 0. %0X8155.7

oK || Cancel |

Figure 73: Configuring MODBUS Client

139

Q
=
G

\

5. CONFIGURATION

. . Factory .
Configuration Description default Options
Name Name of the instance MODBUS_Device Identifier, according to IEC

61131-3

Destination IP IP address of the server 0.0.0.1 1.0.0.1 to 223.255.255.255
TCP Port TCP Port 502 2 to 65534
Mapning Disablin Initial address used to dis-) Any address of the %Q area,
ppiig g able MODBUS relations limited by the CPU model
Table 118: Configuration of Client Devices
Notes:

Instance Name: this field is the identifier of the device, which is checked according to IEC 61131-3, i.e. it does not allow
spaces, special characters and starting with numeral character. It is limited to 24 characters.

TCP Port: if there are multiple instances of the protocol added in a single Ethernet interface, different TCP ports must be
selected for each instance. Some TCP ports, among the possibilities mentioned above, are reserved and therefore cannot be
used. See table Reserved TCP/UDP ports.

Mapping Disabling: composed of 32 bits, it is used to disable, individually, the 32 MODBUS relations configured in
Device Mappings space. The relation is disabled when the corresponding bit is equal to 1, otherwise, the mapping is enabled.
This field is limited by the size of output variables addressable memory (%Q) at CPU, which can be found in section Memory.

Default Value: factory default cannot be set for the Mapping Disabling field, since the creation of a protocol instance can
be made at any moment within the application development. The MasterTool IEC XE software itself allocate a value from the
range of direct representation output variables (%Q), still unused.

Communication Time-out: the settings present on the button Advanced... on the TCP connection, are described in the
notes of the section Device Configuration — Configuration via Symbolic Mapping.

5.5.8.2.3. Mapping Configuration — Configuration via Direct Representation (%Q)

The MODBUS relations settings, viewed in the figures below, follow the parameters described in table below:

28|

Pleaze select Data Type of the Mapping to be added:

- Add Mapping

Coi -

| ok || cancsl |

Figure 74: MODBUS Data Type

140

]
=
G

\

5. CONFIGURATION

I MODBUS Device Ma

Function

| Read hd | Read Data Start Address Read Data Size
Read Coils (FC 1) 1 =11

-

Read Settings

-

Slave Address
1

Palling {ms)
100

Mapping Diagnostics Area

66942

Read |EC Varable
81920

Y
¥

Used range: “WQB66542 .0B6EI4T

Used range: 1.1

-
-

Used range: %IX8192.0..%X8132.0

Figure 75: MODBUS Function

In table below, the number of factory default settings and the values for the column Options, may vary according to the
data type and MODBUS function (FC).

Configuration Description Default Value | Options
Read
Function MODBUS function type Read Write
Read/Write
Mask Write
Slave Address MODBUS slave address 1 0to 255
Polling (ms) fr‘:lrsl)od of communication 100 0 to 3600000
. . . Starting address of MOD-
Mapping Diagnostics Area BUS interface diagnostics - 0to 2147483640
Starting address of the read
Read Data Start Address MODBUS data 1 1 to 65536
Read Data Size Number of read MODBUS) Depends on the function
data used
Read IEC Variable Starting address of the read - 0 to 2147483647
variables (%]I)
Write Data Start Address | >ring address of MOD- 1 I to 65536
BUS writing data
Write Data Size Number of MODBUS writ-) Depends on the function
ing data used
Write IEC Variable Starting address of the write - 0 to 2147483647
variables (%Q)
Mask Write IEC Variables | 5 .rting address of variables - 0 to 2147483644
for write mask (%Q)

Table 119: Device Mapping

141

5. CONFIGURATION

Notes:

Device Mappings Table: the number of settings and values described in the column Options may vary according to the
data type and MODBUS function.

Slave Address: typically, the address O is used when the server is a MODBUS RTU or MODBUS RTU via TCP Gateway,
and the same broadcasts the request to all network devices. When the address 0 is used, the client doesn’t waits for a response
and its use serves only to written commands. Moreover, in accordance with MODBUS standard, the valid address range for
slaves is 0 to 247, and addresses 248 to 255 are reserved.

Polling: this parameter indicates how often the communication set for this relation must be executed. At the end of
communication will be awaited a time equal to the configured polling and after, will be performed a new communication as
soon as possible.

Mapping Diagnostic Area: this field is limited by the size of output variables addressable memory (%Q) at CPU, which
can be found in the section Memory . The configured MODBUS relations diagnostics are described in Table 93.

Size of the Read and Write Data: details of the size of the data supported by each function are described in the notes of
Requests Configuration — Symbolic Mapping Settings section.

When accessing the communication data memory is between devices with different endian-
ism (Little-Endian and Big-Endian), inversion of the read/write data may occur. In this case,
the user must adjust the data in the application.

Read IEC Variable: in case the MODBUS data type is Coil or Input Status (bit), the IEC variables initial address will be
in the format %IX10.1. However, if the MODBUS data type is Holding Register or Input Register (16 bits), the IEC variables
initial address will be in the format %IW. This field is limited by the memory size of the addressable input variables (%I) from
each CPU, which can be seen on Memory section.

Write IEC Variable: in case the MODBUS data type is Coil (bit), the IEC variables initial address will be in the format
%QX10.1. However, if the MODBUS data type is Holding Register (16 bits), the IEC variables initial address will be in the
format %QW. This field is limited by the memory size of the addressable output variables (% Q) from each CPU, which can be
seen on Memory section.

Write Mask of IEC Variables: the Mask Write Register function (FC 22) employs a logic between the value already
written and the two words that are configured in this field using %QW(0) for the AND mask and %QW(2) for the OR mask;
allowing the user to handle the word. This field is limited by the size of output variables addressable memory (%(Q) of each
CPU, which can be found in the section Memory.

Default Value: the factory default value cannot be set for the Mapping Diagnostics Area, Read IEC Variable, Write IEC
Variable and Mask Write IEC Variables fields, since the creation of a relation can be performed at any time on application
development. The MasterTool IEC XE software itself allocate a value from the range of direct representation output variables
(%Q), still unused. Factory default cannot be set to the Read/Write Data Size fields, as they will vary according to the
MODBUS data type selected.

Unlike other tasks of an application, when a mark is reached at MainTask debugging, the
MODBUS Ethernet Client instance task or any other MODBUS task will stop being executed
at the moment it tries to write in the memory area. This occurs in order to maintain data
consistency of memory areas while MainTask is not running.

5.5.8.3. MODBUS Client Relation Start in Acyclic Form

To start a MODBUS Client relation in acyclic form, it is suggested the following method which can be implemented in a
simple way in the user application program:

Define the maximum polling time for the relations;

Keep the relation normally disabled;

Enable the relation at the moment the execution is desired;

Wait for the confirmation of the relation execution finishing and, at this moment, disable it again.

5.5.9. MODBUS Ethernet Server

This protocol is available for all Nexto Series CPUs on its Ethernet channels. When selecting this option at MasterTool
IEC XE, the CPU becomes a MODBUS communication server, allowing the connection with MODBUS client devices. This
protocol is only available when the CPU is in execution mode (Run Mode).

142 altus

——

5. CONFIGURATION

There are two ways to configure this protocol. The first one makes use of direct representation (%Q), in which the variables
are defined by your address. The second one, through symbolic mapping, where the variables are defined by your name.

The procedure to insert an instance of the protocol is found in detail in the MasterTool IEC XE User Manual — MU299609.

5.5.9.1. MODBUS Server Ethernet Protocol Configuration for Symbolic Mapping
To configure this protocol using Symbolic Mappings, it is necessary to execute the following steps:
= Configure the MODBUS server protocol general parameters, as: TCP port, protocol selection, IP filters for Reading

and Writing (available at the Filters Configuration button) and communication times (available at the Server Advanced
Configurations button).

» Add and configure MODBUS mappings, specifying the variable name, data type, data initial address and data size.

The description of each configuration is related ahead in this section.

5.5.9.1.1. MODBUS Server Protocol General Parameters — Configuration via Symbolic Mapping

The general parameters, found on the MODBUS protocol initial screen (figure below), are defined as.

Configuration (Bus) ﬂ MODBUS_Symbol_Server X
General Parameters Settings
TCP Port 502 | Fiters.. | |Advanced...

Information

Connection Mode | TCP - |

Figure 76: MODBUS Server General Parameters Configuration Screen

Configuration Description Default Options
TCP Port TCP port 502 2 to 65534
Connection Mode Protocol selection TCP RTU via TCP
TCP

Table 120: MODBUS Server General Configurations

Notes:

TCP Port: if there are multiple instances of the protocol added in a single Ethernet interface, different TCP ports must be
selected for each instance. Some TCP ports, among the possibilities mentioned above, are reserved and therefore cannot be
used. See table Reserved TCP/UDP ports.

The settings present on the Filters... button, described in table below, are relative to the TCP communication filters:

Configuration Description Default Value | Options

Specifies a range of IPs with
write access in the variables

q o .0.0.0 to
Write Filter IP Address declared in the MODBUS 0.0.0.0 3505?2(5)5.255.255
interface.
Specifies the subnet mask in
Write Filter Mask conjunction with the IP filter | 0.0.0.0 0.0.00to
parameter for writing. 255.255.255.255

5. CONFIGURATION

Configuration Description Default Value | Options
Specifies a range of IPs with
. read access in the variables

Read Filter IP Address declared in the MODBUS 0.0.0.0 25%32;255.255
interface.
Specifies the subnet mask in

Read Filter Mask conjunction with the IP filter | 0.0.0.0 0.0.0.0to
parameter for reading. 255.255.255.255

Note:

Table 121: IP Filters

Filters: filters are used to establish a range of IP addresses that have write or read access to MODBUS relations, being

rights.

individually configured. The permission criteria is accomplished through a logical AND operation between the Write Filter
Mask and the IP address of the client. If the result is the same as the Write Filter IP Address, the client is entitled to write. For
example, if the Write Filter IP Address = 192.168.15.0 and the Write Filter Mask = 255.255.255.0, then only customers with
IP address = 192.168.15.x shall be entitled. The same procedure is applied in the Read Filter parameters to define the read

The communication times of the MODBUS server protocol, found on the Advanced... button of the configuration screen,
are divided into: Task Cycle and Connection Inactivity Time-out.

MODEUS Advanced Settings

-

(=)

Settings
Task Cycle (ms) 50 =
Connection Inactivity Time-out () |10 =
Keep the communication running on CPU stop
oK || Cancel

Figure 77: MODBUS Server Advanced Settings Configuration Screen

Configuration Description Default Value | Options

Time for the instance execu-

Task Cycle (ms) tion within the cycle, with- 50 5t0 100
out considering its own exe-
cution time
Maximum idle time between

C.Onnectlon Inactivity | client ar'ld server before the 10 1 to 3600

Time-out (s) connection is closed by the
server
Enable the MODBUS Sym-

Keep the communication | bol Slave to run while the

running on CPU stop. CPU is in STOP or after a Unmarked Marked or Unmarked
breakpoint

Table 122: MODBUS Server Advanced Configurations

144

altus

5. CONFIGURATION

Notes:

Task Cycle: the user has to be careful when changing this parameter as it interferes directly in the answer time, data

volume for scanning and mainly in the CPU resources balance between communications and other tasks.

Connection Inactivity Time-out: this parameter was created in order to avoid that the maximum quantity of TCP con-
nections is reached, imagining that inactive connections remain open on account of the most different problems. It indicates
how long a connection (client or server) can remain open without being used (without exchanging communication messages).

If the specified time is not reached, the connection is closed releasing an input in the connection table.

5.5.9.1.2. MODBUS Server Diagnostics — Configuration via Symbolic Mapping

The diagnostics and commands of the MODBUS server protocol configured, either by symbolic mapping or by direct
representation, are stored in variables of type T_DIAG_MODBUS_ETH_SERVER_1 and the mapping by direct representation
are in 4-byte and 8-word, which are described in table below (n is the value configured in the %Q Start Address of Diagnostics

Area field):
Direct Rep- | Diagnostic Variable
resentation T_DIAG_MODBUS Size Description
Variable _ETH_SERVER_1 .*
Diagnostic bits:
%QX(n).0 tDiag. BIT The server is running.
bRunning
%QX(n).1 tDiag. BIT The Ze};vecr 1s not (riunmng (see bit blnter-
bNotRunning ruptedByCommand).
) The bit bNotRunning was enabled, be-
% QX(n).2 tDiag. BIT cause the server was interrupted by the user
bInterruptedByCommand through the command bit.
%QX(n).3 tDiag. BIT Discontinued diagnostic.
bConfigFailure
%QX(n).4 tDiag. BIT Discontinued diagnostic.
bRXFailure
%QX(n).5 tDiag. BIT Discontinued diagnostic.
bTXFailure
% QX(n).6 tDiag. BIT Discontinued diagnostic.
bModuleFailure
%QX(n).7 tDiag. BIT Reserved.
bDiag_7_reserved
% QB(n+1) byDiag_1_reserved BYTE Reserved.
Command bits, restarted automatically:
%QX(n+2).0 tCommand. BIT Stop the server.
bStop
%QX(n+2).1 tCommand. BIT Restart the server.
bRestart
% QX(n+2).2 tCommand. BIT Reset diagnostics statistics (counters).
bResetCounter
%QX(n+2).3 tCommand. BIT Reserved.
bDiag_19_reserved
%QX(n+2).4 tCommand. BIT Reserved.
bDiag_20_reserved
%QX(n+2).5 tCommand. BIT Reserved.
bDiag_21_reserved
145

altus

5. CONFIGURATION

Direct Rep- | Diagnostic Variable
resentation T_DIAG_MODBUS Size Description
Variable _ETH_SERVER_1 .*
%QX(n+2).6 tCommand. BIT Reserved.

bDiag_22_reserved
%QX(n+2).7 tCommand. BIT Reserved.

bDiag_23_reserved
% QB(n+3) byDiag_3_reserved BYTE Reserved.

Communication statistics:

tStat. Number of established connections be-

% QW (n+4) wActiveConnections WORD tween client and server (0 to 64).
Connections counter, between the client

% QW (n+6) tStat. WORD and server, interrupted after a period of in-

wTimeoutClosedConnections activity - time-out (0 to 65535).
%QW(n+8) tStat WORD Connections counter interrupted due to

A .
wClientClosedConnections customer request (0 to 65535).
Ethernet frames counter received by the

% QW (n+10) tStat. WORD server. An Ethernet frame can contain

wRXFrames more than one request (0 to 65535).
%QW(n+12) tStat WORD Requests received by the server counter

A .

wRXRequests and answered normally (0 to 65535).

Requests received by the server counter
and answered with exception codes (0 to

65535). The exception codes are listed be-
%QW(n+14) tStat. WORD low:

wIXExceptionResponses 1: the function code (FC) is legal, but not

supported.

2: relation not found in these data MOD-
BUS.

3: illegal value for the address.

128: the master/client has no right to read

or write.
129: MODBUS relation is disabled.
% QW (n+16) tStat. WORD Illegal requests counter (0 to 65535).
wRXIllegalRequests
%QW(n+18) tStat. WORD Reserved.

wDiag_18_Reserved

Table 123: MODBUS Server Diagnostics

Note:
Counters: all counters of the MODBUS Ethernet Server Diagnostics return to zero when the limit value 65535 is exceeded.

5.5.9.1.3. Mapping Configuration — Configuration via Symbolic Mapping

The MODBUS relations configuration, showed on figure below, follows the parameters described on table below:

146 altus

5. CONFIGURATION

Mappings
. Data Start Absolute Data i
Value Variable Data Type Address Start Address Data Size Data Range
] -
Figure 78: MODBUS Server Data Mappings Screen
. . Default .
Configuration Description Value Options
Value Variable Symbolic variable name - Name of a variable declared
in a program or GVL

Coil

Data Type MODBUS data type - Input Status
Holding Register
Input Register

Starting address of the
Data Start Address MODBUS data - 1 to 65536

Absolute Data Start Ad- | Start address of absolute

dress data of Modbus as its type
Data Size Size of the MODBUS data - 1 to 65536
Data Range Data range address config-))

ured

Table 124: MODBUS Ethernet Mappings Configuration

Notes:

Value Variable: this field is used to specify a symbolic variable in MODBUS relation.
Data Type: this field is used to specify the data type used in the MODBUS relation.
Data Start Address: data initial address of the MODBUS relation.

Absolute Data Start Address: absolute start address of the MODBUS data according to their type. For example, the
Holding Register with address 5 has absolute address 400005. This field is read only and is available to assist in Client/Master
MODBUS configuration that will communicate with this device. The values depend on the base address (offset) of each data
type and allowed MODBUS address for each data type.

Data Size: the Data Size value sets the maximum amount of data that a MODBUS relation can access from the initial
address. Thus, in order to read a continuous range of addresses, it is necessary that all addresses are declared in a single
relation. This field varies according to the configured type of MODBUS data.

Data Range: is a read-only field and reports on the range of addresses that is being used by this mapping. It is formed by
the sum of the fields Data Start Address and Data Size. There can be no range overlays with others mappings of the same Data

Type.

Unlike other tasks of an application, when a mark is reached at MainTask debugging, the
MODBUS Ethernet Server instance task or any other MODBUS task will stop being exe-
cuted at the moment it tries to write in the memory area. This occurs in order to maintain
data consistency of memory areas while MainTask is not running.

5.5.9.2. MODBUS Server Ethernet Protocol Configuration via Direct Representation (% Q)

To configure this protocol using Direct Representation (%Q), the user must perform the following steps:

= Configure the general parameters of MODBUS Server Protocol, such as: communication times, address and direct
representation variables (%Q) to receive the diagnostics and control relation.

147 altus

——

5. CONFIGURATION

= Add and configure MODBUS relations, specifying the MODBUS data type, direct representation variables (%Q) to
receive/write the data and amount of data to be reported.

The descriptions of each configuration are listed below in this section.

5.5.9.2.1. General Parameters of MODBUS Server Protocol — Configuration via Direct Representation (%Q)

The general parameters, found on the home screen of MODBUS protocol configuration (figure below), are defined as:

Nexto.project* - MasterTool

Fle Edit Wew Project Buld Onlne Debug Tools Window Help A4
A7 ||
=l B dh Y EA #h
Devices v 3 x Configuration (Bus) [{J MODBUS_Server x hd
(| = 5 wexo || server settings
= [pevice (nx3030) %Q Start Address of Diagnostics Area TCP Part Protocal
=-EH pLC Logic 65922 2] |s02 o
. - ©) RTUwia TCP
i} Application Size Mapping Disabling -
[sil of Materials 20 “| [p1sz s @Tce
Configuration and Consumption

Used range: %QB66922..%QB66941 Used range: %QX8192.0..%QX8195.7
Server Mappings

{4 Diagnostic Explorer
*-[2 systemGyLs -
) SystemPOUs | | Data Type Data Start Address Data Size IEC Variable =
+-2) UserGVLs
* 2 UserPOUs

i) Library Manager
= {8 Task Configuration

= @ MainTask
) MairPrg

1
2
3
4
= [{ configuration (us) 5
[
7
8
9

n

= [nx3030 (NX3030)
% com1
% comz
=% NET1
m MODBUS _Server (MODBUS Server)
% nET2

= 1] r
, [t e [
<2 Deves | Pous [add..]

Bl Messages - Total 0 error(s), 0 warning(s), 0 message(s)

Lastbuid: € 0 ® 0 Precomple: Project user: (nobady) %]

Figure 79: MODBUS Server Setup Screen

TCP port, protocol and direct representation variables (%Q) to control relations and diagnostics:

Configuration Description Default Value | Options
%Q.Start Address of Diag- Start.mg a.ddress of the diag-) 0 to 2147483628
nostics Area nostic variables
Size Size of diagnostics 20 Disabled for editing
TCP Port TCP Port 502 2 to 65534

. A Starting address used to dis-
Mapping Disabling able MODBUS relations - 0to 2147483644
Protocol Protocol selection TCP RTU via TCP

TCP

Table 125: Settings to control relations and diagnostics

Notes:

% Q Start Address of Diagnostics Area: this field is limited by the size of output variables addressable memory (%Q) at
CPU, which can be found in section Memory.

TCP Port: if there are multiple instances of the protocol added in a single Ethernet interface, different TCP ports must be

selected for each instance. Some TCP ports, among the possibilities mentioned above, are reserved and therefore cannot be
used. See table Reserved TCP/UDP ports.

148 ¢

[
G

\

5. CONFIGURATION

Mapping Disabling: composed of 32 bits, used to disable, individually, the 32 MODBUS relations configured in Server
Mappings space. The relation is disabled when the corresponding bit is equal to 1, otherwise, the mapping is enabled. This
field is limited by the size of output variables addressable memory (%Q) of each CPU, which can be found on Memory section.

Default Value: the factory default value cannot be set to the %Q Start Address of Diagnostics Area and Mapping Disabling
fields, because the creation of a Protocol instance may be held at any time on application development. The MasterTool IEC
XE software itself allocate a value, from the range of output variables of direct representation (%Q), not used yet.

The communication times of the MODBUS Server protocol, found on the Advanced... button of the configuration screen,
are divided into: Task Cycle (ms) and Connection Inactivity Time-out (s). Further details are described in MODBUS Server
Protocol General Parameters — Configuration via Symbolic Mapping section.

The diagnostics and MODBUS commands are described in Table 123.

5.5.9.2.2. Mapping Configuration — Configuration via Direct Representation (%Q)

The MODBUS relations settings, viewed in the figures below, follow the parameters described in table below:

% Add Mapping ﬁ

Please select Data Type of the Mapping to be added:

Coi v

Mapping Settings
Diata Start Address Diata Size

f

Used range: 1.8

|EC Variable
2136 =

Used range: %0X8196.0. 3L0X8196.7

) sty

0K || Cancel |

Figure 81: MODBUS Server Function

149

\

Q
=
G

5. CONFIGURATION

Configuration Description Default Options
Coil (1 bit)
Data Type MODBUS data type Coil Holding Register (16 bits)
Input Status (1 bit)
Input Register (16 bits)
Data Start Address MODBUS data initial ad- 1 1 to 65536
dress
1 to 65536 (Holding Regis-
Data Size MODBUS data quantity 8 ter and Input Register)
8 to 65536 (Coil and Input
Status)
IEC Variable Varlables initial - address - 0 to 2147483647
(%Q)
Read-only Allow reading only Disabled Enabled or Disabled

Table 126: Server Mappings

Notes:
Options: the values written in the column Options may vary according with the configured MODBUS data.

Data Size: the Data Size value sets the maximum amount of data that a MODBUS relation can access from the initial
address. Thus, to read a continuous range of addresses, it is necessary that all addresses are declared in a single relation. This
field varies according to the set MODBUS data type, that is, when selected Coil or Input Status, the field Data Size must be a
number multiple of 8. It is also important to take care so the maximum value is not greater than the addressable output memory
size and the attributed values aren’t the same already used during the application.

When accessing the communication data memory is between devices with different endian-
ism (Little-Endian and Big-Endian), inversion of the read/write data may occur. In this case,
the user must adjust the data in the application.

IEC Variable: in case the MODBUS data type is Coil or Input Status (bit), the IEC variables initial address will be in the
format for example %QX10.1. However, if the MODBUS data type is Holding Register or Input Register (16 bits), the IEC
variables initial address will be in the format %QW. This field is limited by the memory size of the addressable output variables
(%Q) from each CPU, which can be seen on the Memory section.

Read-only: when enabled, it only allows the communication master to read the variable data. It does not allow the writing.
This option is valid for the writing functions only.

Default: the default cannot be defined for the IEC Variable field as the creation of a protocol instance can be made at any
moment within the application development, making the MasterTool IEC XE software allocate a value itself from the direct
representation output variables range (%Q) still not used. The default cannot be defined for the Data Size field as it will vary
according to selected MODBUS data type.

The settings present on the Filters... button, described in table below, are relative to the TCP communication filters:

Configuration Description Default Value | Options
Specifies a range of IPs with
. . write access in the variables

Write Filter [P Address declared i the MODBUS | 0000 2-5%92-2 5t02 .
interface.
Specifies the subnet mask in

Write Filter Mask conjunction with the IP filter | 0.0.0.0 0.0.0.0 to
parameter for writing. 255.255.255.255

150

]
=
G

\

5. CONFIGURATION

Configuration Description Default Value | Options
Specifies a range of IPs with
. read access in the variables

Read Filter IP Address declared in the MODBUS 0.0.0.0 (2)5(2.()2‘2;255.255
interface.
Specifies the subnet mask in

Read Filter Mask conjunction with the IP filter | 0.0.0.0 0.0.0.0to
parameter for reading. 255.255.255.255

Table 127: IP Filters

Note:

Filters: filters are used to establish a range of IP addresses that have write or read access to MODBUS relations, being
individually configured. The permission criteria is accomplished through a logical AND operation between the Write Filter
Mask and the IP address of the client. If the result is the same as the Write Filter IP Address, the client is entitled to write. For
example, if the Write Filter IP Address = 192.168.15.0 and the Write Filter Mask = 255.255.255.0, then only customers with
IP address = 192.168.15.x shall be entitled. The same procedure is applied in the Read Filter parameters to define the read
rights.

In the previously defined relations, the maximum MODBUS data size can be 65536 (maximum value configured in the
Data Size field). However, the request which arrives in the MODBUS Ethernet Server must address a subgroup of this mapping
and this group must have, at most, the data size depending on the function code which is defined below:

= Read Coils (FC 1): 2000

» Read Input Status (FC 2): 2000

= Read Holding Registers (FC 3): 125

= Read Input Registers (FC 4): 125

= Write Single Coil (FC 5): 1

= Write Single Holding register (FC 6): 1
= Force Multiple Coils (FC 15): 1968

= Write Holding Registers (FC 16): 123
= Mask Write Register (FC 22): 1

= Read/Write Holding Registers (FC 23):

¢ Read: 121
e Write: 121

Differently from other application tasks, when a depuration mark in the MainTask is reached,
the task of an Ethernet MODBUS Server instance and any other MODBUS task will stop
running at the moment that it tries to perform a writing in a memory area. It occurs in order
to keep the consistency of the memory areas data while a MainTask is not running.

5.5.10. OPC DA Server

It’s possible to communicate with the Nexto Series CPUs using the OPC DA (Open Platform Communications Data
Access) technology. This open communication platform was developed to be the standard in industrial communications.
Based on client/server architecture, it offers several advantages in project development and communication with automation
systems.

A very common analogy to describe the OPC DA technology is of a printer. When correctly connected, the computer needs
a driver to interface with the equipment. Similarly, the OPC helps with the interface between the supervision system and the
field data on the PLC.

When it comes to project development, to configure the communication and exchange information between the systems is
extremely simple using OPC DA technology. Using other drivers, based on addresses, it’s necessary to create tables to relate
tags from the supervision system with variables from the programmable controller. When the data areas are changed during
the project, it’s necessary to remap the variables and create new tables with the relations between the information on the PLC
with the Supervisory Control And Data Acquisition system (SCADA).

151

Q
=
G

\

5. CONFIGURATION

SCADA Server

OPC Client

OFC Server

t -

Gatewsy

SCADA Client Level

Figure 82: OPC DA Architecture

Role

Description

Programmable Controllers and
Field Devices Level

The field devices and the PLCs are where the operation state and
plant control information are stored. The SCADA system ac-
cess the information on these devices and store on the SCADA
server, so that the SCADA clients can consult it during the plant
operation.

Acquisition Network

The acquisition network is where the requests for data collected
by field devices travel, to request the data collected from the
field devices.

Gateway for PLC Communica-
tion

A gateway enables the communication between the OPC DA
Server and Nexto Series PLCs. A gateway in the same sub-
net of the PLC is always necessary, as described in chapter
Communication Settings of MasterTool IEC XE User Manual
— MU299609.

OPC Server Module

The OPC DA Server is a Module responsible of receiving the
OPC DA requests and translate them to the communication with
the field devices.

Programmable Controllers and Field Device Level

The figure above shows an architecture to communicate a SCADA system and PLCs in automation projects. All the roles
present on a communication are explicit on this figure regardless of the equipment in which it’s executed, since they can be
done in the same equipment or in various ones. Each of the roles of this architecture are described on table below.

152

Q
=
G

\

5. CONFIGURATION

Role Description

The OPC Client Device module is responsible for the requests to
Device Module OPC Client the OPC DA Server using the OPC DA protocol. The collected
data is stored on the SCADA Server database.

The SCADA Server is responsible for connecting to the various
SCADA Server Level communication devices and store the data collected by them on
a database, so that it can be consulted by the SCADA Clients.

The supervision network is the network through which the
SCADA Clients are connected to the SCADA Servers. In a
Supervision Network topology in which there aren’t multiple Client or where the
Server and the Client are installed on the same equipment, this
kind of network doesn’t exist.

The SCADA Clients are responsible for requesting to the
SCADA Servers the necessary data to be shown in a screen
SCADA Client Level where the operation of a plant is being executed. Through then
it is possible to execute readings and writings on data stored on
the SCADA Server database.

Table 128: Roles Description on an OPC DA Server Architecture

The relation between the tags on the supervision system and the process data on the controller variables is totally trans-
parent. This means that, if there’s an alteration on the data areas through the development of the project, it isn’t necessary to
rework the relations between the information on the PLC and the SCADA, just use the new variable provided by the PLC on
the systems that request this data.

The use of OPC offers more productivity and connectivity with SCADA systems. It contributes with the reduction of
applications development time and with the maintenance costs. It even makes possible the insertion of new data on the
communication in a simplified form and with greater flexibility and interoperability between the automation system, due to the
fact that it’s an open standard.

The installation of the OPC DA Server is done altogether with MasterTool IEC XE installation, and its settings are done
inside the tool. It’s worth notice that the OPC is available only with the local Ethernet interface of the Nexto CPUs. The
Ethernet expansion modules do not support this functionality.

5.5.10.1. Creating a Project for OPC DA Communication

Unlike the communication with drivers such as MODBUS and PROFIBUS DP, to set an OPC DA communication it’s only
necessary to correctly set the node and indicate which variables will be used in the communication. There are two ways to
indicate which variables of the project will be available in the OPC DA Server. In both cases it’s necessary to add the object
Symbol Configuration to the application, in case it isn’t present. To add it, right-click over the object Application and select
the option.

ATTENTION

The variables shown in the objects loConfig_Globals, loConfig_Application_Mappings and
loConfig_Global_Mappings are used internally for I/O control and shouldn’t be used by the
user.

ATTENTION

In addition to the variables declared at SFC language POUs, some implicitly created vari-
ables are also shown. To each step created, a type lecSfc.SFCStepType variable is created,
where the step states can be monitored, namely whether it is active or not and the time that
it’s active as in norm IEC 61131-1. To each transition, a BOOL type variable is created
that defines if the transition is true or false. These variables are shown in the object Symbol
Configuration that can be provided access to the OPC Client.

153

Q
=
G

\

5. CONFIGURATION

Configuration (Bus) B2 Symbol Configuration X

! 'Execute "Build” command to be able to select variables (you need an error-free build). ||ﬁ| Build | | Details. ..

Changed symbol configuration will be transferred with the next download or online change

Symbols Access Rights Maximal Attribute Type Members Comment

Figure 83: Symbol Configuration Object

The table below presents the descriptions of the Symbol Configuration object screen fields.

Field Description
Symbols Variable identifier that will be provided to the OPC DA Server.

Indicates what the possible access right level are in the declared
symbol. When not utilized, this column remains empty, and the
Access Rights access right level is maximum. Otherwise the access right level
can be modified by clicking over this field. The possible options
are:

L
Read only ®

Write only Ry

Read and Write k.

Indicates the maximum access right level that is possible to as-
sign to the variable. The symbols hold the same meanings from
the ones in Access Rights. It’s not possible to change it and it’s
indicated by the presence or not of the attribute 'symbol’

Maximal

Indicates if attribute 'symbol’ is being used when the variable is
declared. When not used, this column remains empty. For the
Attribute cases in which the attribute is used, the behavior is the follow-
ing:

L3
attribute symbol’ := "read’ the column shows #

H‘

attribute symbol’ := "readwrite’ the column shows “»

attribute ’symbol’ :="write’ the column shows

Type Data type of the declared variable.

When the data type is a Struct, a button is enabled in this col-
Members umn. Clicking on the button will allow the selection of which
elements of that struct will be provided to the OPC DA Server.
Variable comment, inserted on the POU or GVL where the vari-
able was declared. To show up as a variable comment here, the
Comment comment must be entered one line before the variable on the
editor, while in text mode, or in the comment column when in
tabular mode.

Table 129: Symbol Configuration object screen fields description

When altering the project settings, such as adding or removing variables, it’s necessary to run the command Build, in
order to refresh the list of variables. This command must be executed until the message in Figure 83 disappear. After this, all
available variables in the project, whether they are declared on POUs, GVLs or diagnostics, will be shown here and can be
selected. The selected variables will be available on the OPC DA Server to be accessed by the Clients.

154 altus

5. CONFIGURATION

Configuration (Bus)

] View -

B2 Symbol Configuration X

Changed symbaol configuration will be transferred with the next download or online change

Symbols

¥ #x
¥ # Y

+-[] |E] Constants

H-[E] IoConfig_Globals
+-[] |E] MainPrg

H-[E] Special_Variables
&[] System_Diagnostics
=-[#] UserPrg

L&

Maximal Attribute Type Members Comment

R
3

Figure 84: Selecting Variables on the Symbol Configuration

After this procedure, the project must be loaded into a PLC so the variables will be available for communication with
the OPC DA Server. If the object Symbol Configuration screen is open and any of the variables, POUs or GVLs selected is
changed, its name will appear with the red color. The situations in which this may happen is when a variable is deleted or the

attribute value is modified.

It’s also possible to set which variables will be available on the OPC DA Server through an attribute inserted directly on
the POUs or GVLs where the variables are declared. When the attribute ’symbol’ is present on the variable declaration, and it
may be before the definition of the POU or GVL name, or to each variable individually, these variables are sent directly to the
object Symbol Configuration, with a symbol in the Attribute column. In this case it’s necessary, before loading the project into
the CPU, to run the command Build from within the object Symbol Configuration.

The valid syntaxes to use the attribute are:

» attribute 'symbol’ := 'none’ — when the attribute value is 'none’, the variables won’t be available to the OPC DA Server
and won’t be shown in the object Symbol Configuration screen.
= attribute ’symbol’ := 'read’ - when the attribute value is 'read’, the variables will be available to the OPC DA Server

with read only access right.

» attribute 'symbol’ := 'write’ - when the attribute value is 'write’, the variables will be available to the OPC DA Server

with write only access right.

= attribute 'symbol’ := 'readwrite’ — when the attribute value is 'readwrite’, the variables will be available to the OPC DA

Server with read and write access right.

In the following example of variable declaration, the variables A and B settings allow that an OPC DA Server access them
with read and write access. However the variable C cannot be accessed, while the variable D can be accessed with read only

access rights.

{attribute 'symbol'

PROGRAM UserPrg
VAR

A: INT;
B: INT;
{attribute 'symbol'
C: INT;
{attribute 'symbol'
D :INT;
END_VAR

'readwrite'}

When a variable with a type different from the basic types is defined, the use of the attribute must be done inside the
declaration of this DUT and not only in the context in which the variable is created. For example, in the case of a DUT
instance inside of a POU or a GVL that has an attribute, it will not impact in the behavior of this DUT instance elements. It
will be necessary to apply the same access right level on the DUT declaration.

155

]
=
G

\

5. CONFIGURATION

ATTENTION

The configurations of the symbols that will be provided to the OPC DA Server are stored
inside the PLC project. By modifying these configurations it’s necessary to load the appli-
cation on the PLC so that it’s possible to access those variables.

7

ATTENTION

When a variable is removed from the project and loaded on the PLC unchecking it from the
object Symbol Configuration, the variable can no longer be read with the OPC Client. If the
variable is added again to the project, with the same name and same context, and inserted on
the object Symbol Configuration, it will be necessary to reboot the OPC Client to refresh the
variable address reference, which will be created on a different memory area of the PLC.

5.5.10.2. Configuring a PLC on the OPC DA Server

The configuration of the PLC is done inside MasterTool IEC XE through the option available in the Online. It’s necessary
to run MasterTool IEC XE as administrator.

Devices Device Configuration

PLCO1 PLCOT
PLCO2 Name

[Using the Gateway Embedded in PLC
Gateway Address 127 .

Gateway Port 1217
[7] Redundancy Corfiguration
Use TCP/IP Blockdriver

Device Name

IP Address Active
IP Address PLC A
IP Address PLC B

Device Port

Mew Device] [Read Project Configuration]

Figure 85: OPC DA Server Settings

The Gateway Configuration is the same set in the Gateway used for the communication between the MasterTool IEC XE
and the PLC and described in Communication Settings, present in the MasterTool IEC XE User Manual — MU299609. If the
configuration used is localhost the Gateway Address must be filled with 127.0.0.1. This configuration is necessary because
the OPC DA Server uses the same communication gateway and the same protocol used for communication between PLC and
MasterTool IEC XE.

There’s the option Using the Gateway Embedded in PLC that can be selected when it’s desired to use the Gateway that is in
PLC itself. This option can be used to optimize the communication, since it prevent excess traffic through a particular station,
when more than one station with OPC Client is connected to the same PLC.

To configure the PLC, there are two possible configuration types, depending on the selection of the checkbox Use TCP/IP
Blockdriver. When the option isn’t selected, the field Device Name must be filled with the name of the PLC. This is the name
displayed by the PLC selected as active in the Communication Settings screen.

The other option is to use the IP Address of the Ethernet Interfaces. The same address set on the configuration screens must
be put in this field. Furthermore, when this method is used, the port number must be set to 11740. The confirmation will save
the OPC DA Server configurations.

156

Q
=
G

\

5. CONFIGURATION

secondary PLC address to
which the server will com-
municate if a failure occurs.

Device Configuration Description g:i;ault Set- Options
PLC description inside the This field is a STRING and
OPC DA Server configura- it accepts alphanumeric (let-
tion file. This field can have ters and numbers) charac-
Name any name, but fo.r ’organiza- PLCOI’ te’rs and the “_” Chgrggter.
tional purposes, it’s recom- It’s not allowed to initiate
mended to use the project a STRING with numbers or
name that is loaded in the with “_”. It allows up to 49
PLC. characters.
IP Address of the computer
that the OPC DA Server is
installed, for the cases in
which all PLCs are in the
Gateway Address same subnetwork. If there’s 127.0.0.1 0.0.0.0 to 255.255.255.255
some PLC that it’s in an-
other subnetwork, it must be
specified the Gateway used
in that subnetwork.
TCP Port for the connection
Gateway Port with the Gateway., 1217 2 to 65534
It’s the PLC name displayed
in the Communication Sei- This field is a STRING and
tings of the Device tab. The it accepts any characters
name is the STRING before) K
Device Name the hexadecimal value that ‘0000’ as done l.n th.e PLC narpe
. configuration in the Device
is between []. Enabled . .
Communication Settings tab.
only when the checkbox Use It allows up to 49 characters
TCP/IP Blockdriver is not)
selected.
IP address of the PLC. En-
abled only when the check-
IP Address Active bo?((.jse TCPIP .BIOCk_ 192.168.15.1 | 0.0.0.0 to 255.255.255.255
driver is selected. It is used
only when the setting is not
redundant.
IP address of the PLC A. En-
abled only when the config-
uration is redundant. It is
IP Address PLC A the primary PLC address to | 192.168.15.69 | 0.0.0.0 to 255.255.255.255
which the server will com-
municate if there is no fail-
ure.
IP address of the PLC B. En-
abled only when the config-
IP Address PLC B uration is redundant. Itis the | o) | g 1570 | 0,0.0.0 t0 255.255.255.255

Device Port

TCP Port. Enabled only
when the checkbox Use
TCP/IP Blockdriver is se-
lected.

11740

11740 or 11739

Table 130: Configuration Parameter of each PLC for the OPC DA Server

157

altus

5. CONFIGURATION

When a new PLC needs to be configured on the OPC DA Server, simply press the New Device button and the configuration
will be created. When the setup screen is accessed, a list of all PLCs already configured on the OPC DA Server will be
displayed. Existing configurations can be edited by selecting the PLC in the Devices list and editing the parameters. The PLCs
settings that are no longer in use can be deleted. The maximum number of PLCs configured in an OPC DA Server is 16.

If the automation architecture used specifies that the OPC DA Server must be ran on a computer that does not execute
communication with the PLC via MasterTool IEC XE, the tool must be installed on this computer to allow OPC DA Server
configuration in the same way as done in other situations.

ATTENTION

To store the OPC DA Server configuration, the MasterTool IEC XE must be run with ad-
ministrator rights on the Operational System. Depending on the OS version, this privilege
must be done in the moment that the program is executed: right-click the MasterTool IEC
XE icon and choose Run as Administrator.

,
| .

ATTENTION

The settings of a PLC on the OPC DA Server are not stored in the project created in Mas-
terTool IEC XE. For this reason, it can be performed with an open or closed project. The
settings are stored in a configuration file where the OPC DA Server is installed. When chang-
ing the settings, it is not required to load the application on the PLC, but depending on the
OPC Client it may be necessary to reconnect to the server or load the settings for the data to
be updated correctly.

5.5.10.2.1. Importing a Project Configuration

Using the button Read Project Configuration, as shown in Figure 85, you can assign the configuration of the open project
to the PLC configuration that is being edited. For this option to work correctly, there must be an open project and an Active
Path should be set as described in Communication Settings, present in the MasterTool IEC XE User Manual — MU299609. If
any of these conditions is not met an error message will be displayed and no data will be modified.

When the above conditions are valid, the PLC settings receive the parameters of the opened project. The IP Address and
Gateway Port information are configured as described in Communication Settings according to the Active Path. However, the
IP Address settings are read from NET 1 Ethernet interface settings. The port for connection to the PLC is always assigned in
this case as 11740.

5.5.10.3. Configuration with the PLC on the OPC DA Server with Connection Redundancy

It’s possible to configure the OPC DA Server for it to operate with connection redundancy. This way, the OPC DA Server
will communicate preferably with one PLC, but when, by any reason, it can’t establish communication with this PLC, a second
PLC, also configured, will be accessed. This configuration is especially important for the communication between SCADA
systems and the Nexto Series PLCs with Half-Cluster redundancy, where there’s a PLC in active state executing the process,
and another PLC in stand-by state, ready to take control of the process if some kind of failure occurs.

The project setup in these cases is similar to what is described in Creating a Project for OPC DA Communication. However,
when a Project is created with Redundant Half-Cluster and the communication with the supervisory system will be through the
OPC DA Server, it’s necessary to select the Configuration of OPC DA communication option as enabled during the MasterTool
IEC XE Project Creation Wizard. By enabling this option, the project will create the code needed to run the communication
with OPC connection redundancy.

In the redundant case, a variable is declared within the POU named NonSkippedPrg. This POU is executed in both PLCs,
regardless of redundancy state. Within this POU, a BOOL type variable is created, used to control the connection with the
OPC DA Server named OPCRedundancyActive. This variable can be accessed from any application point through the whole
context, i.e. Application.NonSkippedPrg.OPCRedundancyActive. 1t is declared in the Symbol Configuration object with the
right read only by the SCADA. When the value of the variable is TRUE, data is read by connecting with this PLC. This way,
every time there is a status change among PLCs, the variable state will also change, remaining in the state TRUE in the PLC
which is in the redundancy active state.

The NonSkippedPrg program code, in ST language, is as follow:

158

Q
=
G

\

5. CONFIGURATION

PROGRAM NonSkippedPrg

VAR
{attribute 'symbol' := 'read'}
OPCRedundancyActive : BOOL;
END_VAR

IF fbRedundancyManagement.m_fbDiagnosticsLocal.eRedState = REDUNDANCY_ STATE.
ACTIVE THEN

OPCRedundancyActive := TRUE;
ELSE

OPCRedundancyActive := FALSE;
END_TF

The NonSkippedPrg program code can be edited as long as the user watch out not to change the above code. This code
tests the state of redundancy and writes a BOOL type variable called OPCRedundancyActive with it. If the PLC is the active,
the variable value is TRUE, otherwise it’s FALSE. This variable receives the attribute attribute ‘symbol’ := ‘read’ to allow the
OPC DA Server to access the content and define where the information should be read.

If it’s decided to add OPC communication after the creation of the project, it is possible to configure the OPC by adding
the above code in the NonSkippedPrg program and adding the Symbol Configuration object to the project.

For the configuration of the redundant PLC on the OPC DA Server, it’s necessary to enable the Redundancy Configuration
option in the configuration screen as shown in Figure 85. When this option is selected, the option Use TCP/IP Blockdriver will
always be used. In addition, the IP Address PLC A and IP Address PLC B fields will be enabled as described in Table 130.
These IP Addresses are configured in the same Ethernet interfaces within the PLC project with Half-Cluster redundancy. For
ease of configuration when a redundant project is open, the Read Project Configuration button can be used.

The OPC DA Server connection redundancy is done through only one Server. For the cases
in which a better data availability for the supervision systems is desired, a redundant SCADA
Server architecture must be adopted. In this cases it isn’t required any OPC DA Server
configuration. Refer to the SCADA system documentations to see which configurations are
needed for the operation of the redundant architecture.

5.5.104. OPC DA Communication Status and Quality Variables

For each PLC created in the OPC DA Server, status variables are generated, named _CommState and _CommStateOK. The
_CommsState variable indicates the communication between the OPC and the PLC state. This state can interpreted by the OPC
Clients according to table below.

State Value | Description

If the communication between the OPC DA Server and
the OPC Client is terminated, this value will be returned.
When there’s more than one OPC Client simultaneously
connected, this return will occur on the disconnection of
the latter connected one. Besides the fact that this state
is in the variable, it’s value can’t be visualized because
it only changes when there’s no longer a connection with
the client.

The PLC configured in the OPC DA Server is not con-
nected. It can happen if the configuration is incorrect
(wrong PLC and/or Gateway IP Address) or the PLC is
unavailable in that moment.

STATE_TERMINATE -1

STATE_PLC_NOT_CONNECTED 0

159

]
=
G

\

5. CONFIGURATION

State Value | Description

The PLC configured in the OPC DA Server is connected.
This is a transitory state during the connection.

STATE_PLC_CONNECTED 1

There are no symbols (variables) available in the PLC
configured in the OPC DA Server. It can happen when
there are no symbols or there isn’t a project loaded on the
PLC.

Finished the process of reading the symbols (variables)
STATE_SYMBOLS_LOADED 3 from the PLC configured in the OPC DA Server. This is
a transitory state during the connection.

After the reading of the symbols (variables) the OPC DA
STATE_RUNNING 4 Server is running the periodic update of the values of the
available symbols in each configured PLC.

STATE_NO_SYMBOLS 2

There has been a disconnection with the PLC configured

e > in the OPC DA Server.
When the OPC configuration (stored in an OPCServer.ini
STATE_NO_CONFIGURATION 6 file) has a wrong syntax, the variable value will be this.

Generally, this behavior is not observed for the Master-
Tool IEC XE maintains this configuration valid.

Table 131: Description of the Communication states between OPC DA Server and the PLC

The _CommStateOK 1is a variable of the Bool type that indicates if the communication between the OPC DA Server and
the PLC is working. When the value is TRUE, it indicates that the communication is working correctly. If the value is FALSE,
for some reason it isn’t possible to communicate with the PL.C.

In addition to monitoring the communication status, the OPC Client can access information on the quality of communi-
cation. The quality bits form a byte. They are divided into three groups of bits: Quality, Substatus and Limit. The bits are
distributed as follows QQSSSSLL, in which QQ are the Quality bits, SSSS Substatus bits and LL Limit bits. In this case the Q0
bits are the most significant in the byte, while the LL bits are the least significant.

QQ | Bits values | Definition | Description

The value read can’t be used be-
cause there’s some problem with
0 00SSSSLL Bad the connection. It’s possible to
monitor the value of _CommState
and diagnose the problem.

The quality can’t be defined and
1 01SSSSLL | Uncertain | may be presented in the Substatus
field.

This value is reserved and isn’t used
by the OPC standard.

The quality is good and the value
read can be used.

2 10SSSSLL NA

3 11SSSSLL Good

Table 132: Description of the OPC Quality value

Table 132 presents the possible quality values. The OPC DA Server only returns Good and Bad Quality values. A OPC
Client can maintain the quality as Uncertain due to failures in which it can’t establish a connection to the Server. In case of
monitoring of the 8 quality bits directly from the OPC DA Server, the Substatus and Limit fields shall be null and the Good
Quality will be presented as the value 192 and the Bad Quality will be value 0.

160 altus

5. CONFIGURATION

5.5.10.5. Limits of Communication with OPC DA Server

The table below presents the OPC DA Server configuration limits.

Maximum number of variables communicating with
a single PLC

Maximum number of PLCs in an OPC DA Server 16

Maximum number of simultaneous connections of an
OPC DA Server in a single PLC

Table 133: OPC DA Server Communication Limits

Note:

Maximum number of variables communicating with a single PLC: There is no configuration limit. The maximum
possible number of variables depends on the processing capacity of the device.

The Maximum number of simultaneous connections of an OPC DA Server in a single PLC
is shared with connections made with the MasterTool IEC XE. I.e. the sum of connections of
OPC DA Server and MasterTool IEC XE should not exceed the maximum quantity defined
in Table 133.

The communication between the OPC DA Server and the PLC uses the same protocol used in the MasterTool IEC XE
communication with the PLC. This protocol is only available for the Ethernet interfaces of the Nexto Series CPUs, it’s not
possible to establish this kind of communication with the Ethernet expansion modules.

When a communication between the OPC DA Server and the PLC is established, these two elements start a series of
transactions aimed at solving the addresses of each declared variables, optimizing the communication in data reading regime.
Besides, it’s also resolved in this stage the communication groups used by some Clients in order to optimize the communication.
This initial process demands some time and depends on the quantity of mapped variables and the processing capacity of the
device.

5.5.10.6. Accessing Data Through an OPC DA Client

After the configuration of the OPC DA Server, the available data on all PLCs can be accessed via an OPC Client. In the
configuration of the OPC Client, the name of the OPC DA Server must be selected. In this case the name is CoDeSys.OPC.DA.
The figure below shows the server selection on the client driver of the BluePlant SCADA software.

The same way that in MasterTool IEC XE, some tools must be executed with administrator
privileges in the Operational System for the correct functioning of the OPC Client. Depend-
ing on the OS version, this privilege must be activated in the moment that the program is
executed. To do this, right-click MasterTool IEC XE icon and choose Run as Administrator.

161

Q
=
G

\

5. CONFIGURATION

B T T T T —

Express projects enabled (no license found)
ows SRS, A
Protocol{ OPCXmIDA | Hep

Node[0PCXmDA | ot New
Drag 3 column header here to group by that column G =
Name " Channel | Primary5tation BackupStation Description |

*

, OPCXmIDA

%DPC_M
CoDesys.OPC.02

Elipse.OPCSwr.1

Beijer.InProcessheo.1
Matrikon.OPC.Simulation.1

Figure 86: Selecting the OPC DA Server in the Client Configuration

In cases where the server is remotely located, it may be necessary to add the network path or IP address of the computer
in which the server is installed. In these cases, there are two configuration options. The first is to directly configure it, being
necessary to enable the COM/DCOM Windows Service. However, a simpler way is to use a tunneller tool that abstracts the
COM/DCOM settings, and enable a more secure communication between the Client and the Server. For more information on
this type of tool, refer to the NAPI151 - Tunneller OPC.

Once the Client connects with the Server, it’s possible to use the TAGs import commands. These commands consult the
information declared in the PLC, returning a list with all the symbols available in it.

Impeort Device Node Points

Node Station: CoDeSys.OPC.DA;500;False;False;2147483647:0:0,10000;True

Branch: i

| Refresh

TaghName | Type | Address

PLC1_Application_GVL_X
PLC1_Application_GVL_Y
PLC1_Application_GVL_Z

PLC1_Application_MAINPRG_MyMastar
PLC1_CommsState

PLC1_CommStateOK

Figure 87: Symbols list consulted by the OPC Client

AnalogDouble
AnalogDouble
AnalogDouble
AnalogDouble
AnalogDoulsle
AnalogDouble

PLCL. Application. GVLX
PLCL.Application.GVLY

PLCL. Application. GVLZ

PLC1 Application MAINPRG. MyMaster
PLC1._ CommState

PLC1._ CommStateOK

The list of selected variables will be included in the Client communication list and can be used, for example, in a SCADA

system screen.

162

altus

5. CONFIGURATION

The simulation mode of MasterTool IEC XE software can be used for OPC communication
tests. The information on how to configure it are presented in the Testing an OPC Commu-
nication using the Simulator section of the MasterTool IEC XE User Manual — MU299609.

5.5.11. OPC UA Server

The OPC UA protocol is an evolution of the OPC family. Independent of platform, it is designed to be the new standard
used in industrial communications.

Based on the client/server architecture, the OPC UA protocol offers numerous advantages in the development of design
and facilities in communication with the automation systems.

When it comes to project development, configuring communication and exchanging information between systems is ex-
tremely simple using OPC UA technology. Using other address-based drivers, it is necessary to create tables to relate the
supervision system tags and programmable controller variables. When data areas change during project development, it is
necessary to redo the mappings and new tables with the relationships between the PLC information and the SCADA system.

SCADA Client Level

SCADA Server

OPC UA Client

Programmable Controlers and Field
Devices Level

Figure 88: OPC UA Architecture

The figure above presents a typical architecture for SCADA system communication and PLCs in automation design. All
roles present in the communication are explicit in this figure regardless of where they are running, they may be on the same
equipment or on different equipment. Each of the roles of this architecture is described in table below.

163

\

Q
=
G

5. CONFIGURATION

Role Description

The field devices and the PLCs are where the operation state and
plant control information are stored. The SCADA system ac-

Hrggmminiy Comiglys gl cess the information on these devices and store on the SCADA

Field Devices Level server, so that the SCADA clients can consult it during the plant
operation.
The OPC UA Server is an internal module of the PLCs respon-
OPC UA Server Modules sible for receiving the OPC UA requests and translating them

for communication with the field devices.

The acquisition network is the network in which OPC UA mes-
Acquisition Network sages travel to request the data that is collected from the PLCs
and field devices.

The OPC UA Client module, which is part of the SCADA
Server, is responsible for making requests to the OPC UA
Servers using the OPC UA protocol. The data collected by it
is stored in the SCADA Server database.

The SCADA Server is responsible for connecting to the various
SCADA Server Level communication devices and store the data collected by them on
a database, so that it can be consulted by the SCADA Clients.

The supervisory network is the network by which SCADA
Clients are connected to SCADA Servers, often using a propri-
etary SCADA system protocol. In a topology in which multiple
Supervision Network Clients are not used or the Server and Client are installed in the
same equipment, there is no such network, and in this case this
equipment must directly use the OPC UA protocol for commu-
nication with the PLC.

The SCADA Clients are responsible for requesting to the
SCADA Servers the necessary data to be shown in a screen
SCADA Client Level where the operation of a plant is being executed. Through then
it is possible to execute readings and writings on data stored on
the SCADA Server database.

OPC Client Device Module

Table 134: Roles Description on an OPC UA Server Architecture

When using the OPC UA protocol, the relationship between the tags of the supervisory systems and the process data in
the controller variables is completely transparent. This means that if data areas change during project development, there is no
need to re-establish relationships between PLC information and SCADA. Simply use the new variable provided by the PLC in
the systems that request this data.

The use of OPC UA offers greater productivity and connectivity with SCADA systems. It contributes to reduced application
development time and maintenance costs. It also enables the insertion of new data in the communication in a simplified way
with greater flexibility and interoperability among the automation systems as it is an open standard.

It is worth noting that the OPC UA is only available on the local Ethernet interfaces of the Nexto CPUs. Ethernet expansion
modules do not support this functionality.

5.5.11.1. Creating a Project for OPC UA Communication

The steps for creating a project with OPC UA are very similar to the steps described in the section Creating a Project
for OPC DA Communication. As with the OPC DA protocol, the configuration of the OPC UA protocol is based on the
configuration of the Symbol Configuration. To enable the OPC UA, simply enable the Support OPC UA Features option in the
configuration, as shown in figure below.

164 altus

5. CONFIGURATION

B
o

Create a remote access symbol configuration.

Name:

Symbol Configuration

[Indude Comments in XML
Support OPC UA Features

Client side data layout
) Compatibility Layout
@ Optimized Layout

[Add]’ Cancel l

Figure 89: Symbol Configuration Object

When enabling OPC UA protocol support, OPC DA protocol support is still enabled. You
can enable OPC UA and OPC DA communications at the same time to report the variables
configured on the Symbol Configuration object or via attributes.

Another way to access this configuration, once already created a project with the Symbol Configuration object, is given by

accessing the Sertings menu of the configuration tab of the Symbol Configuration. Simply select the option Support OPC UA
features to enable support for the OPC UA protocol, as shown in figure below.

Configuration (Bus) v 2 Symbeol Configuration X

[Settings | Tools ~

Changed symbol configura[7]] - support GPC UA features
Symbaols

3-[F Constants

3-F MainPrg
- Special_Varia
3-[F] System_Diag
=-[F UserPrg

%[IoConfig_Gld

<>

O

Indude Comments in XML
Include Mode Flags in XML

Configure comments and attributes. ..
Configure synchronisation with IEC tasks...
Optimized Layout

-

O

Enable direct IjO Access

Indude call information in XML

Figure 90: Enabling OPC UA in Object Symbol Configuration

After this procedure the project can be loaded into a PLC and the selected variables will be available for communication
with the OPC UA Server.

165

Q
=
G

\

5. CONFIGURATION

5.5.11.2. Types of Supported Variables

This section defines the types of variables that support communication via the OPC UA protocol, when declared within
GVLs or POUs and selected in the Symbol Configuration object (see previous section).

The following types of simple variables are supported:

= BOOL

= SINT

= USINT/BYTE

= INT

= UINT/WORD

= DINT

= UDINT /DWORD
= LINT

= ULINT /LWORD
= REAL

= LREAL

= STRING

= TIME

= L[TIME

You can also use structured types (STRUCTS or Function Blocks) created from previous simple types.
Finally, it is also possible to create arrays of simple types or of structured types.

5.5.11.3. Limit Connected Clients on the OPC UA Server

The maximum number of OPC UA clients connected simultaneously in a PLC is 8 (eight).

5.5.11.4. Limit of Communication Variables on the OPC UA Server

There is no configuration limit. The maximum possible number of variables depends on the processing capacity of the
device.

When a communication is established between the OPC UA Server and the PLC, these two elements initiate a series of
transactions that aim to solve the address of each declared variable, optimizing the communication in regime of reading of
data. In addition, at this stage, the classifications of the communication groups used by some Clients are also resolved in order
to optimize communication. This initial process takes some time and depends on the amount of variables mapped and the
processing capacity of the device.

5.5.11.5. Encryption Settings

If desired, the user can configure encryption for OPC UA communication using the Basic256SHA256 profile, for a secure
connection (cyber security).

To configure encryption on an OPC UA server, you must create a certificate for it using the following steps in the MasterTool
programmer:

1. Define an active path for communication with the controller (no login required);
From the View menu, select Security Screen;

Click the Devices tab on the left side of this screen;

Click the icon [#] to perform a refresh;

Click on the Device icon, below which will open several certificates (Own Certificates, Trusted Certificates, Untrusted
Certificates, Quarantined Certificates);

Click the icon [to generate a certificate and select the following parameters:
= Key length (bit): 3072
= Validity period (days): 365 (can be modified if desired)
7. Wait while the certificate is calculated and transferred to the controller (this may take a few minutes);

Reboot the controller.

9. On the OPC UA client, perform the necessary procedures to connect to the OPC UA server and generate a certificate
with the Basic2565ha256 profile (see specific OPC UA client manual for details);

DAl

o

*®

166 altus

——

5. CONFIGURATION

10. Back to MasterTool, click on the icon (%] of the Security Screen to perform a refresh;

11. On the Security Screen, select the "Quarantined Certificates" folder under the Device. In the right panel you should
observe a certificate requested by the OPC UA client;

12. Drag this certificate to the folder "Trusted Certificates";

13. Proceed with the settings in the OPC UA client (see specific OPC UA client manual for details).

To remove encryption previously configured on a controller, you must do the following:

Define an active path for communication with the controller (no login required);

From menu View, select Security Screen;

Click on the Devices on the left side of this screen;

Click the icon '# to perform a refresh;

Click on the Device icon, below which will open several certificates (Own Certificates, Trusted Certificates, Untrusted
Certificates, Quarantined Certificates);

Click the folder "Own Certificates" and in the right panel select the certificate (OPC UA Server);

Click the icon > to remove this project and driver certificate;
Reset (turn off and on) the controller.

Nk L=

el

5.5.11.6. Main Communication Parameters Adjusted in an OPC UA Client

Some OPC UA communication parameters are configured on the OPC UA client, and negotiated with the OPC UA server
at the time the connection between both is established. The following subsections describe the main OPC UA communication
parameters, their meaning, and care to select appropriate values for them.

In an OPC UA client it is possible to group the variables of a server into different subscriptions. Each subscription is a
set of variables that are reported in a single communication packet (PublishResponse) sent from the server to the client. The
selection of the variables that will compose each subscription is made in the OPC UA client.

Grouping variables into multiple subscriptions is interesting for optimizing the processing
capacity and consumption of Ethernet communication bandwidth. Such aspects of optimiza-
tion are analyzed in greater depth in the OPC UA Server user manual MU214609, where
some rules for the composition of subscriptions are suggested. This user manual also dis-
cusses in more depth several concepts about the OPC UA protocol.

Some of the communication parameters described below must be defined for the server as a whole, others for each sub-
scription, and others for each variable that makes up a subscription.

5.5.11.6.1. Endpoint URL

This parameter defines the IP address and TCP port of the server, for example:
opc.tep://192.168.17.2:4840

In this example, the IP address of the controller is 192.168.17.2.

The TCP port should always be 4840.

5.5.11.6.2. Publishing Interval (ms) e Sampling Interval (ms)

The Publishing Interval parameter (unit: milliseconds) must be set for each subscription.

The Sampling Interval parameter must be set for each variable (unit: milliseconds). However, in many OPC UA clients, the
Sampling Interval parameter can be defined for a subscription, being the same for all the variables grouped in the subscription.

Only the variables of a subscription whose values have been modified are reported to the client through a Publish Re-
sponse communication packet. The Publishing Interval parameter defines the minimum interval between consecutive Publish

Response packets of the same subscription, in order to limit the consumption of processing and Ethernet communication
bandwidth.

To find out which subscription variables have changed and are to be reported to the client in the next Publish Response
packet, the server must perform comparisons, and such (samplings) are performed by the same with the Sampling Interval. It
is recommended that the value of Sampling Interval varies between 50% and 100% of the value of the Publishing Interval,
because there is a relatively high processing consumption associated with the comparison process executed in each Sampling
Interval.

It can be said that the sum between Publishing Interval and Sampling Interval is the maximum delay between changing a
value on the server and the transmission of the Publish Response packet that reports this change. Half of this sum is the average
delay between changing a value on the server and the transmission of the Publish Response packet that reports this change.

167 altus

——

5. CONFIGURATION

5.5.11.6.3. Lifetime Count e Keep-Alive Count

These two parameters must be configured for each subscription.

The purpose of these two parameters is to create a mechanism for deactivating a subscription on the initiative of the
server, in case it does not receive customer’s PublishRequest communication packets for this subscription for a long time.
PublishRequest packets must be received by the server so that it can broadcast Publish Response packets containing the
subscription variables that have changed their values.

If the server does not receive PublishRequest packets for a time greater than Lifetime Count multiplied by Publishing
Interval, the server deactivates the subscription, which must be re-created by the client in the future if desired.

In situations where the variables of a subscription do not change, it could be a long time without the transmission of
PublishResponses and consequently PublishRequests that succeed, causing an undesired deactivation of the subscription. To
prevent this from happening, the Keep-Alive Count parameter was created. If there are no subscription data changes for a
time equal to Keep-Alive Count multiplied by Publishing Interval, the server will send a small empty Publish Response packet
indicating that no variable has changed. This empty Publish Response will authorize the client to immediately send the next
PublishRequest.

The Keep-Alive Count value must be less than the Lifetime Count value to prevent unwanted deactivation of the subscrip-
tion. It is suggested that LifeTime Count be at least 3 times larger than Keep-Alive Count.

5.5.11.6.4. Queue Size e Discard Oldest

These parameters must be maintained with the following fixed values, which are usually the default values on the clients:

= Queue Size: 1
= Discard Oldest: enable

According to the OPC UA standard, it is possible to define these parameters for each variable. However, many clients
allow you to define common values for all variables configured in a subscription.

Queue Size must be retained with value 1 because there is no event support in this implementation of the OPC UA server,
so it is unnecessary to define a queue. Increasing the value of Queue Size may imply increase communication bandwidth and
CPU processing, and this should be avoided.

Discard Oldest must be maintained with the enable value, so that the Publish Response package always reports the most
recent change of value detected for each variable.

5.5.11.6.5. Filter Type e Deadband Type

These parameters must be maintained with the following fixed values, which are usually the default values in the clients:

» Filter Type: DataChangeFilter
= Deadband Type: none

According to the OPC UA standard, it is possible to define these parameters for each variable. However, many clients
allow you to define common values for all variables configured in a subscription.

The Filter Type parameter must be of DataChangeFilter, indicating that value changes in the variables should cause it to
be transmitted in a Publish Response package.

Deadband Type should be kept in “none” because there is no implementation of deadbands for analog variables. In this
way, any change of the analog variable, however minimal, causes its transmission in a Publish Response package.

To reduce processing power and Ethernet communication bandwidth, you can deploy deadbands on your own as follows:
= Do not include the analog variable in a subscription;

= Instead, include in a subscription an auxiliary variable linked to the analog variable;
= Copy the analog variable to the auxiliary variable only when the user-managed deadband is extrapolated.

5.5.11.6.6. PublishingEnabled, MaxNotificationsPerPublish e Priority

It is suggested that the following parameters be maintained with the following values, which are usually the default values
in the clients:

» PublishingEnabled: true
» MaxNotificationsPerPublish: 0
= Priority: 0

5. CONFIGURATION

These parameters must be configured for each subscription.
PublishingEnable must be “true” so that the subscription variables are reported in case of change of value.

MaxNotificationsPerPublish indicates how many of the variables that have changed value can be included in the same
Publish Response package. The special value “0” indicates that there is no limit to this, and it is recommended to use this
value so that all changed variables are reported in the same Publish Response package.

Priority indicates the relative priority of this subscription over others. If at any given moment the server should send
multiple Publish Response packages of different subscriptions, it will prioritize the one with the highest value of priority. If all
subscriptions have the same priority, Publish Response packets will be transmitted in a fixed sequence.

5.5.11.7. Accessing Data Through an OPC UA Client

After configuration of the OPC UA Server the data available in all PLCs can be accessed via a Client OPC UA. In the
configuration of the OPC UA Client, the address of the correct OPC UA Server must be selected. In this case the address
opc.tcp://ip-address-of-device:4840. The figure below shows the server selection in the SCADA BluePlant client software
driver.

Like MasterTool IEC XE, some tools need to be run with administrator rights on the Op-
erating System for the correct operation of the OPC UA Client. Depending on the version
of the Operating System this right must be authorized when running the program. For this
operation right click on the tool executable and choose the option Run as administrator.

VD T2 A Nadectient | = [& 7 A | [}
Express projects enabled (no license found)
o~
PO | am——— . A am—
Run Info |
Protocol] OPCUA | [e |
~ Nod=4 client1] | Import] [New...]
Tags
Drag a column header here to group Filter by Name: I:I Q =
T Security Name ” Channel | PrimaryStation |BackupSlat|on |Descnplion ‘
*
centl OPCUA [FakseFalsefalse [+
p Devices 1
=~ -
:|§ Alarms Service URL
RefreshRate I 500
. AllitemsSameGroup [
- EnableReadPolling [
Datasets
&= WindowsAuthentication |
DisableSecurity il
] UserName
1o Seripts Password
Domain
= ReadFromDevice [
" Displays UseTimestampFromComputer |

l] _Reports

Figure 91: Selecting OPC UA Server in Client Configuration

Once the Client connects to the Server, TAG import commands can be used. These commands query information declared
in the PLC, returning a list with all the symbols made available by the PLC.

169

\

=
&

5. CONFIGURATION

Sync Device Node

Node Station” ua:opc.tcp:/f192.168.23.58:4840;500; True;False; False;Tru False

Branch [DeviceSet XP325 Resources Application

Filter by address

Figure 92: List of Symbols Browsed by OPC UA

The list of selected variables will be included in the Client’s communications list and can be used, for example, in screens
of a SCADA system.

5.5.12. EtherCAT Master

EtherCAT (Ethernet Control Automation Technology) is a master-slave architecture protocol with high performance, for
deterministic Ethernet, that allows real time performance as it updates 1000 distributed I/O in 30 S or 100 servomotors axis
each 100 S using twisted pair cables or optic fiber. Besides, it supports flexible topology, allowing for line, tree and/or star
connections.

An Ethernet frame can be processed in real time instead of being received, interpreted and copied as process data in each
connection. The FMMU (Fieldbus Memory Management Unit) in each Slave node reads the data that are addressed to it at
the same time that the telegram is forwarded to the next device. In a similar way, the input data are inserted as the telegram
is passed. Because of this, the frames are delayed just a few nanoseconds. Access on the Ethernet terminals can be made in
any order as the data sequence is independent of the physical order. It can perform Broadcast, Multicast and between slaves
communications.

The EtherCAT protocol allows a precise synchronization, that is required, for example, in applications where several axis
simultaneously perform coordinated movements, it can be done through an exact adjust of the Distributed Clock. There’s also
the possibility to configure devices that, as opposed to synchronous communication, have an elevated tolerance degree inside
the communication system.

The configuration of EtherCAT modules is initially determined by the Device Description Files of the Master and Slave
devices used, and can be modified by the user in the Configuration Editor dialog boxes. However, for conventional applications

and with the desire of an as easy as possible manipulation, large-scale configurations can be automated by choosing the
Autoconfig mode in EtherCAT Master Parameters.

Note the possibility of modifying the Master and Slave configuration parameters also in operational mode, through the
Master and Slave instances, according to the availability of the device in question.

5.5.12.1. Installing and inserting Ether CAT Devices

In order to be able to insert and configure EtherCAT devices as objects in the device tree, the Slave devices must be
installed.

The Master device is automatically installed by the default MasterTool IEC XE installation. The EtherCAT Master defines
which Slaves can be inserted.

To install the Slave devices the Device Repository must be opened, use the EtherCAT XML Device description Config-
uration File (*.xml) filter and select the device description files (EtherCAT XML Device Description / ESI EtherCAT Slave
Information), supplied with the hardware. The Slave descriptions are available as XML files (file type: *.xml).

An EtherCAT Master can be added to the Devices Tree through the Add Device command, through the context menu of the
CPU NET connectors.

Under a master, one or more slaves can be added, selecting an EtherCAT Master and running the Add Device command
(context menu of the EtherCAT Master) or running the Scan For Devices command.

170 altus

——

5. CONFIGURATION

= NET2
=[] EtherCAT Master (EtherCAT Master)
=eeal GN_9386 (GN-9386 EtherCAT Adapter)
[GT_3114(GT-3114_AI, 4CHs, 0~20, 4~20mA, 12Bits, 10RTE)
[l GT_2744 (GT-2744_Relay Output 4 FTs, 24Vdc/2A, 240Vac/24, 10RTE)
ﬂj GT_3804 (GT-3804_AI, 4 CHs, Thermocouple, 10RTE)

Figure 93: EtherCAT Configuration Example

- Only one EtherCAT Master instance per project is allowed.

- Only available on the NET connectors of the PLC.

- It cannot be used when the NETS are set as redundant.

- It cannot be used when Project has cluster redundancy.

- Other drivers cannot be instanced in the same NET port as the EtherCAT Master.

5.5.12.1.1. EtherCAT - Scan For Devices

The Scan For Devices command, available in the EtherCAT Master context menu, runs a search for the Slave devices
physically installed in the EtherCAT network of the PLC currently connected. This means that with this command it’s possible
to detect and visualize the hardware components in the window presented in the figure below, allowing the user to map them
directly in the project Device Tree do projeto.

It’s noteworthy that, when the Scan For Devices command is selected, a connection with the PLC will be automatically
established before the search begins and terminated when the search ends. So, for the first execution of this command, the
Gateway connection must be configured and a program with the EtherCAT Master configured must be loaded into the PLC. In
case of future additions of Slave devices, in order to run this command, it’s necessary that the EtherCAT network is stopped.
To do this, put to TRUE the bStopBus bit, present in the variables of the EtherCAT Master Diagnostics.

When the command is executed, the Scanned Devices field will contain a list of all devices and modules found during the
last scan. To add them to the project, just click on the button Copy All Devices To Project. 1It’s also possible to perform a
comparison of the devices found in the search with the ones in the project by selecting the box Show differences to project.

If you add an EtherCAT Master module to the Project and use the Scan For Devices command, you will have a list of all
the available EtherCAT Slaves. Entries in bold will be shown, if there’s more than one device with the same description. With
a double click on the entrance a list will open, and so the desired device can be selected.

After completing the changes in the EtherCAT network configuration, it’s necessary to do a new project download, for the
changes to take effect.

Scan Devices [m| X

Scanned Devices

Device Name Device type Alias Address
= GN_9386 GMN-5386 EtherCAT Adapter | 2100
GT_3114 GT-3114_Al 4 CHs, 07 20...
GT_2744 GT-2744 Relay Oulput4 E..
GT_3804 GT-3804_Al 4 CHs, Them..

[] Show differences to project

Figure 94: EtherCAT Devices Search Dialog

171

\

Q
=
G

5. CONFIGURATION

5.5.12.2. EtherCAT Master Settings

Below are listed the options to carry out the EtherCAT Master configuration, such as defined in Device Description File.

5.5.12.2.1.

EtherCAT Master Parameters

Below are the general parameters found in the initial screen of the EtherCAT Master configuration, according figure below.

Configuration (Bus)
General

Sync Unit Assignment
Qverview

Log

EtherCAT I/O Mapping
EtherCAT IEC Objects
Status

Information

m EtherCAT Master X

EtherCAT

Autoconfig master fslaves

EtherCAT NIC Settings

Destination address (MAC) FF-FF-FF-FF-FF-FF Broadcast [Redundancy

DI0-00-00-00-00-00 Select...

Source address (MAC)

MNetwark name |Ian12

() select network by MAC (® Select network by name

Distributed Clock Options

[] use LRW instead of LWR/LRD

Cyde time 4000 us

5 [] Messages per task
o

Ak Ak

Sync offset 20

) L Automatic restart slaves
|:| Sync window monitoring

4k

Sync window 1 us

Figure 95: EtherCAT Master Configuration Dialog

Device Configuration Description tlzluclttory De- Possible Values

Autoconfig master/slaves Enable t.h e Master an.d Slave Marked Marked
automatic configuration. Unmarked
Sets the time period in

Cycle time [us] which a new data telegram 4000 2000 to 1000000
must be send to the bus.
Adjust the offset, from the

Sync Offset [%] PLC cycle, of the EtherCAT 20 250 0 50
Slave synchronization inter-
rupt.
If enabled, this option al-

Sync window monitoring lows monitoring the Slave Unmarked Marked
synchronization. Unmarked

. Time for the Sync Window

Sync window [1s] Monitoring. 1 1 to 32768

Use LRW instead of | Enabling O.f the combined Unmarked Marked

LWR/LRD read and write commands. Unmarked
If enabled, the read and
write commands that are

Messages per task dealing with input and out- Unmarked Marked
put messages can be done in Unmarked
different tasks.

172

5. CONFIGURATION

. . .. F De- .
Device Configuration Description f;uclttory | Possible Values
Automatic restart slaves Restart ﬂ.le d.e vices when the Marked Marked
communication is aborted. Unmarked

Table 135: EtherCAT Master Configuration

Notes:

Autoconfig master/slaves: If this option is enabled, most of Master and Slave configuration will be made automatically,
based on the description files and implicit calculations. In this case, the FMMU / Sync dialog will not be available. If it’s
unchecked the Image In Address and Image Out Address options will be available to the user.

The Autoconfig mode is enabled by default and usually enough and highly recommended
for standard applications. If it’s disabled, all configuration definitions will have to be made
manually, and thus, some specialized knowledge is required. To configure a Slave-to-Slave
communication, the Autoconfig option must be disabled.

Cycle time: Time period after which, a new data telegram must be sent to the bus. If Distributed Clock functionality is
enabled, the value of this parameter will be transferred to the Slaves clocks. This way, a precise data exchange synchronization
can be achieved, which is especially important in cases where the distributed process demands simultaneous actions. So, a
very precise time base, with a jitter significantly smaller than a microsecond, for all the network can be achieved.

Sync Offset: This value allows the adjustment of the offset of the EtherCAT Slave synchronization interrupt to the PLC
cycle. Normally, the PLC task cycle begins 20% later than the Slaves synchronization interruption. This means that the PLC
task can be delayed by 80% of the cycle time and no message will be lost.

Sync Window: If the synchronization of all Slaves are inside this time window, the EtherCAT Master bDistributed-
ClockInSync diagnostic will be set to TRUE, otherwise it will be set to FALSE. When Distributed Clock is used, it’s highly
recommended to use a dedicated task with high priority as the Bus cycle task of the EtherCAT Master. To do this, it’s necessary
to use Project Profiles that allows the creation of new tasks, then create a cyclic task with priority O (real time task) and link
it to the master Bus cycle task on the EtherCAT Master - I/O Mapping tab of the EtherCAT Master. The user can also change
the value of the wDCInSyncWindow variable, configuring the maximum jitter allowed on the synchronization between master
and slaves.

Use LRW instead of LWR/LRD: Activating this option enables the Slave-to-Slave communication because, instead of
using separated reading (LRD) and write (LWR) commands, combined reading/writing (LRW) commands will be used.

Automatic Restart Slaves: By enabling this option, the Master will restart the Slaves as soon as the communication is
aborted.

5.5.12.2.2. EtherCAT Master - Sync Unit Assignment

This tab of the EtherCAT Master configuration editor shows all slaves that are entered below a specific master with an
assignment to the sync units.

With EtherCAT sync units, multiple slaves are configured into groups and subdivided into smaller units. For each group,
the job counter can be monitored for better and more accurate error detection. As soon as a slave is missing from a group of
synchronization units, the other slaves in the group are also shown as missing. Detection occurs immediately on the next bus
cycle because the job counter is checked continuously. With device diagnostics, the missing group can be remedied as quickly
as possible.

Unaffected groups remain operable without any interference.

5.5.12.2.3. EtherCAT Master - Overview

This tab of the EtherCAT Master configuration editor provides an overview of the states of all slaves, which are entered
below this master and have an address. Modules are not displayed.

5.5.12.2.4. EtherCAT Master - I/O Mapping

This EtherCAT Master configuration editor tab offers the possibility to change the task that will be used for bus updates.

173

Q
=
G

\

5. CONFIGURATION

Configuration (Bus)
| Module /O Mapping
| Module IEC Objects

Information

«d GN_9386 Ei GT_3114 X

Find Filter Show all ~ 4k Add FB for [0 Channel...
Variable Mapping Channel Address Type Default Value Unit Description
] Anzlog Input Ch#0 %W UINT Analog Input Ch#0
] AnclogInput Ch#1 %IW2 UINT Analog Input Ch1
= AnzlogInput Ch#2 %4 UINT Analog Input Ch2

b Bitd %IX4.0 BOOL

b Bit1 %IN4, 1 BOOL

k) Bit2 %IN4.2 BOOL

% Bit3 %Ix4.3 BOOL

b Bit4 %IN4 4 BOOL

k] Eits %IN4.5 BOOL

b Bits %IN4G BOOL

b Bit7 %IN4.7 BOOL

ks Eitd %IX5.0 BOOL

R Bit3 %INS. 1 BOOL

b Bit10 %IXS.2 BOOL

b Bit11 %IXS.3 BOOL

e Bit12 “RINS. 4 BOOL

b Bit13 %IXS.5 BOOL

b Bit14 %IXS.6 BOOL

k) Bit15 INS.7 BOOL
% Anslog Input Ch#3 %IW6 UINT Analog Input Ch#3

| Reset Mapping

% =Create new varisble

% =Map to existing variable

Always update variables

Enabled 1 {use bus cyde task if not used in any task)

Figure 96: Slave I/0 Mapping Dialog

5.5.12.2.5. EtherCAT Master - Status / Information Tabs

The Status tab of the EtherCAT Master configuration editor provides status information (e.g. ’Running’, ’Stopped’) and

diagnostic messages specific of the device and the internal bus system.

The Information tab, present on the EtherCAT Master configuration editor, shows, if available, the following general

information about the module: Name, Vendor, Type, Version Number, Category, Order Number, Description, Image.

5.5.12.3. EtherCAT Slave Configuration

Below are listed the main EtherCAT Slave configuration options, as defined in the Device Description File.

5.5.12.3.1. EtherCAT Slave - General

Below are presented the general parameters found in EtherCAT Slave configuration initial screen. This field is only avail-
able if the Autoconfig mode (Master) isn’t enabled.

174

Q
=
G

\

5. CONFIGURATION

Configuration (Bus)

General

Expert Process Data

Process Data

Startup Parameters

Log

EtherCAT IEC Objects

Status

Information

i GN_9483 X

Address
AutoInc address 0 -

EtherCAT address 1001 =
Distributed Clock

SelectDC
[] Enable 4000
Sync
Enable Sync 0
Syncunit cyde
User-defined
Syncl
Enable Sync 1
Sync unit cyde

User-defined

Startup Checking
Check vendor ID
Check product ID
Check revision number

== ~

[] pownload expected slot configuration

DC Cyclic Unit Control: Assign to Local pC

[Cydic unit
Watchdog

[Latch unit 0

[set multiplier (Reg. 165400) 2498
[set PDI watchdog (Reg. 16%410) [1000

[[] set 5M watchdog (Reg. 16#420) 1000

Identification
(@) Disabled
(7 Configured station alias (ADO 0x00132)

Explicit device identification (ADO 0x0134)

Data Word (2 Bytes)

Additional
Expert settings
[optional

Sync unit cyde (us)

EtherCAT ™~

3 Cyde time (us)

5 shift time (us)

= Cyde time (us)

= Shift time (us)

Timeouts

[Latch unit 1

Akl a4

Value

ADO (hex)

= |100.00 ms
= |100.00 ms

1001 :

1620

Figure 97: EtherCAT Slave Configuration Dialog

Device Configuration Description 2;{3:“ Options

Auto incremental Address

AutoInc Address (16-bit) defined by the Slave - -65535t0 0
position in the network.
Slave final address, assign
by the Master during startup.

EtherCAT Address This address is independent - 1 to 65535
from the position in the net-
work.

Expert settings Enable the Slave advanced | o e Marked
Settings options. Unmarked

Optional Declare the Slave as Op- Unmarked Marked
tional. Unmarked
Show all Distributed Clock

Select DC configurations provided by - -
the device description file.

Enable Distributed Clock Enable " the .Dlstrlt?uted Unmarked Marked
Clock configuration options. Unmarked

175

5. CONFIGURATION

from Init to Pre-Operation
mode.

. . N Default .
Device Configuration Description Value Options
Sync Unit Cycle [1:s] Show the Cycle Time set in 100000 | 2000 to 1000000
Master.
Enable (Sync 0) Enable the Sync ﬁo SYRERIO- | 4y narked | Marked
nization unit configurations. Unmarked
By selecting this option, the
Cycle Time will be deter-
Sync Unit Cycle (Sync 0) mined by the product of the Unmarked Marked
factor and the Sync Unit Cy- Unmarked
cle.
If this option is selected, the
User Defined (Sync 0) dezlred tlglea. n imcro?ec- Unmarked Marked
onds, can be irectly set into Unmarked
the Cycle Time (us) field.
Cycle Time [1s] (Sync 0) | Show the cycle time cur- 100000 1 to 2147483647
rently set.
Time between the sync
oy e events and the “Output -2147483648 to
Shift Time [s] Syne 0) 1 v or “Input Latch” 0 2147483647
time.
Enable (Sync 1) E'nab'l ¢ the 'Sync ﬁl syn§hro— Unmarked Marked
nization unit configurations. Unmarked
By selecting this option, the
Cycle Time will be deter-
Sync Unit Cycle (Sync 1) mined by the product of the Unmarked Marked
factor and the Sync Unit Cy- Unmarked
cle.
If this option is selected, the
User Defined (Sync 1) de:red t1{)ne(,i. n 1lmcro§ec— Unmarked Marked
onds, can be irectly set into Unmarked
the Cycle Time (us) field.
] Show the cycle time cur-
Cycle Time [us] (Sync 1) rently set. 100000 1 to 2147483647
Time between the sync
oy e events and the “Output -2147483648 to
Shift Time [zs] Syne) vy or “Input Latch” 0 2147483647
time.
Check Vendor ID Ifl ugngke%’)légv 111kdlsable Marked Marked
the Vendor €CK. Unmarked
Check Product ID I}fl u;mzrkedel tcvglllkdmable Marked Marked
the Product eck. Unmarked
Set a time reference for the
SDO Access timeout check of a SDO Ac- - 0 to 100000
cess.
Set a time reference for the
[->P timeout check of the switch) 0 to 100000

176

altus

5. CONFIGURATION

Default

Device Configuration Description Value

Options

Set a time reference for
the timeout check of the
switch from Pre-Operation
Pt to Safe-Operation and from) 0 to 100000
Safe-Operation to Opera-

tional modes.
Set the Unit Cycle to the lo-

Cyclic Unit Unmarked Marked

cal microprocessor. Unmarked
Latch Unit 0 Set the.Latch Unit 0 to the Unmarked Marked
local microprocessor. Unmarked
Latch Unit 1 Set the'Latch Unit 1 to the Unmarked Marked
local microprocessor. Unmarked
Table 136: EtherCAT Slave Configurations
Notes:

AutoInc Address: This address is used only during startup, when the Master is assigning the EtherCAT addresses to the
Slaves. When for this matter, the first telegram runs through the Slaves, each fast-read Slave increases its Autolnc Address by
1. The Slave with address O finally will receive the data.

Optional: If a Slave is declared as Optional, no error message will be created in case the device doesn’t exist in the bus
system. Thus a Station alias address must be defined and written to the EEPROM. This option is only available if the option
Autoconfig Master/Slaves in the settings of the EtherCAT Master is activated and if this function is supported by the EtherCAT
Slave.

Enable Distributed Clock: If the Distributed Clock functionality is enabled, the data exchange cycle time, displayed in
the Sync Unit Cycle (us) field will be determined by the Master Cycle Time. Thus the master clock can synchronize the data
exchange within the network. The settings for handling the synchronization unit(s) depend on the Slave.

Enable Sync 0: If this option is activated, the Sync0O synchronization unit is used. A synchronization unit describes a set
of process data which is exchanged synchronously.

Sync Unit Cycle (Sync 0): If this option is activated, the Master Cycle Time, multiplied by the chosen factor will be used
as synchronization cycle time for the slave. The Cycle Time (us) field shows the currently set cycle time.

Shift Time: The Shift Time describes the time between the sync events (Sync0, Syncl) and the Output Valid or Input Latch
times. Writable value, if the slave supports shifting of Output Valid or Input Latch.

Enable Sync 1: If this option is selected, the synchronization unit Sync/ is used. A synchronization unit is a set of process
data which is exchange synchronously.

Sync Unit Cycle (Syncl): If this option is activated, the Master Cycle Time, multiplied by the chosen factor will be used
as synchronization cycle time for the slave. The Cycle Time (us) field shows the currently set cycle time.

Check Vendor ID and Product ID: By default, at startup of the system the Vendor ID and/or the Product ID will be
checked against the current configured settings. If a mismatch is detected, the bus will be stopped and no further actions will
be executed. This serves to avoid the download of an erroneous configuration. This option is intended to switch off the check,
if necessary.

SDO Access: By default there’s no timeout set for the SDO list submit action at system startup. However, if it’s necessary
to check if this action exceeds a certain time, it must be defined (in microseconds) in this field.

I -> P: By default there’s no timeout set for the state transition from /nit to Pre-Operational. Howeyver, if it’s necessary to
check if this action exceeds a certain time, it must be defined (in microseconds) in this field.

P -> S /S -> O: By default there’s no timeout set for the state transition from Pre-Operational to Safe-Operational and
from Safe-Operational to Operational. However, if it’s necessary to check if this action exceeds a certain time, it must be
defined (in microseconds) in this field.

DC cycle unit control: Choose the desired option(s) concerning the Distributed Clock functions in order to define, which
should be assigned to the local microprocessor. The control is done in register 0x980 in the EtherCAT slave. The possible
settings: Cyclic Unit, Latch Unit 0, Latch Unit 1.

Enable: If the setting Optional is not activated, this setting can be activated if explicitly supported by the device description
of the slave. It allows direct assignment of an alias address in order to get the slaves address independent of its position within
the bus. If the option Optional is activated, this checkbox is disabled.

177 altus

5. CONFIGURATION

5.5.12.3.2. EtherCAT Slave - Process Data

The Process Data tab of the EtherCAT Slave configurator editor shows the slave input and output process data, each defined
by name, type and index by the device description file, as seen in figure below.

The selected input (to be read) and output (to be written) of the device are available in the EtherCAT Slave - I/O Mapping
dialog as PLC inputs and outputs to which project variables might be mapped.

Configuration (Bus) Ve GN_9386 X
General Select the Outputs Select the Inputs
Mame Type Index Mame Type Index
Process Data [l 161601 Output(s) 7 16#1A00 Input(s)
oo BOOL 16%7010:01 Analog Input Cha0 UINT 16%6000:01
Startup Parameters L I
D1 BOOL 16#7010:02 Analog Input Ch#1 UINT 16%6000:02
Log D2 BOOL 16%7010:03 Analog Input Cha2 UINT 1656000:03
D3 BOOL 16#7010:04 Analog Input Ch#3 UINT 16#6000:04
EtherCAT IEC Objects b 16#1A02 Input(s)
Analog Input Ch#0 INT 16#6020:01
Status Analog Input Ch#1 INT 16#6020:02
Analog Input Ch#2 INT 16#6020:03
Information Analog Input Ch#3 INT 16#6020:04

Figure 98: Process Data Dialog

The Expert Process Data dialog will only be available in the EtherCAT Slave configuration editor if the Enable Expert
Settings option is activated. It provides another, more detailed, vision of the process data, adding to what is presented in the
Process Data tab. Furthermore, the download of the PDO Assignment and the PDO Configuration can be activated in this
dialog.

If the Slave doesn’t accept the PDO Configuration, it will stay in Pre-Operational state and
none real time data exchange will be possible.

178

Q
=
G

\

5. CONFIGURATION

Figure 99: Expert Process Data Dialog

This dialog is divided in four sections and two options:

= Sync Manager: List of Sync Manager with data size and type of PDOs.

Configuration (Bus) "l GN_93B6 X -
General Sync Manager ok Add [Edit ¥ Delete
PDO List
Expert Process Data s Size Type
0 256 Mailbox Out Index Size Mame Flags SM
Frocess Data 1 256 Mailbox In 16#1601 1.0 Output(s) FM 2
2 1 Outputs 1671400 8.0 Input(s) FM 3
Startup Parameters 3 16 Inputs 16#1A02 8.0 Input{s) FM 3
Log
EtherCAT IEC Objects
Status
Information
PDO Assignment (16#1C12) b Insert [#{ Edit < Delete # MoveUp ¥ Move Down
[w] 16#1601 PDO Content (16#1601
Index Size Offs MName Type
‘lﬁ#?ﬂlﬂ:ﬂl 0.1 0.0 DO BOOL
16#7010:02 0.1 0.1 D1 BOOL
16%7010:03 0.1 0.2 D2 BOOL
16#7010:04 0.1 0.3 D3 BOOL
04 04—
1.0
< >
Download
[] pDO Assignment [[] PDO configuration Load PDO Info from the Device

= PDO Assignment: List of PDOs assigned to the selected Sync Manager. The checkbox activates the PDO and I/O
channels are created. It is similar to the simple PDO configuration windows. Here only PDOs can be enabled or

disabled.

= PDO List: List of all PDOs defined in the device description file. Single PDOs can be deleted, edited or added by

executing of the respective command from the context menu.

= PDO Content: Displays the content of the PDO selected in the section above. Entries can be deleted, edited or added by

executing of the respective command from the context menu.

= PDO Assignment: If activated a CoE write command will be added to index 0x1CXX to write the PDO configuration

0x16XX or 0x1A00.

= PDO Configuration: If activated several CoE write commands will be added to write the PDO mapping to the slave.

If a Slave doesn’t support the PDO configuration, a download may result in a Slave error.
This function should only be used by experts.

179

Q
=
G

\

5. CONFIGURATION

5.5.12.3.3. EtherCAT Slave - Edit PDO List

Edit PDO List — O >
Mame |Mﬁl | I OK |
Index | 1621601 | Cancel

Direction Excude PDOs Sync unit
(O TxPDO (Input) 0 =

(®) RxPDO (Output)

Flags
Mandataory
Fixed content

Figure 100: Edit PDO List Dialog

This dialog is opened through the context menu from the PDO List area, presented in Figure 99. Below are some explana-
tions on the configuration options presented in this dialog.

= Name: Name of the PDO input.

» [ndex: Index of the PDO in being edited.

» TxPDO (Input): If activated, the PDO will be transferred from the Master to the Slave.

= RxPDO (Output): If activated, the PDO will be transferred from the Slave to the Master.
= Mandatory: The PDO is necessary and can’t be unchecked in the PDO Assignment area.

» Fixed Content: The PDO content is fixed and can’t be changed. It’s not possible to add entries in the PDO Content
panel.

» Virtual PDO: Reserved for future use.

» Exclude PDOs: 1It’s possible to define a list of PDO that can, or can’t, be selected along with the PDO being edited in
the PDO Assignment area, or in the Process Data tab. If a PDO is marked in this list, it can’t be selected, turning into
gray in the PDO Assignment area when the PDO in edition is selected.

» SyncUnit: 1D of the PDO Sync Manager shall assigned to.

5.5.12.3.4. EtherCAT Slave - Startup Parameters
In the Startup Parameters tab, parameters for the device can be defined, which will be transferred by SDOs (Service Data

Objects) or IDN at the system’s startup. The options available in this tab, as well as the access possibilities, vary according to
the EtherCAT Slave used and they are present in the Device Description File.

5.5.12.3.5. EtherCAT Slave - I/O Mapping

This tab of the EtherCAT Slave configuration editor offers the possibility to assign the project variables to the EtherCAT
inputs or outputs. This way, the EtherCAT Slave variables can be controlled by the User Application.

180

]
=
G

\

5. CONFIGURATION

Configuration (Bus) Ve GN_oss [T 6T_3114 x -
Module O Mapping Find Filter Show all - 4k Add FB for 0 Channel... 3
Module TEC Objects Variable Mapping Channel Address Type Default Value Unit Description

] Anzlog Input Ch#0 %W UINT Analog Input Ch#0
Infarmation] AnclogInput Ch#1 %IW2 UINT Analog Input Ch1
= AnzlogInput Ch#2 %4 UINT Analog Input Ch2

b Bitd %IX4.0 BOOL

b Bit1 %IN4, 1 BOOL

s Eit2 %IX4.2 BOOL

% Bit3 %I%4.3 BOOL

b Bit4 %IN4 4 BOOL

k] Eits %IN4.5 BOOL

b Bits %IN4G BOOL

b Bit7 %IN4.7 BOOL

ks Eitd %IX5.0 BOOL

R Bit3 %INS. 1 BOOL

b Bit10 %IXS.2 BOOL

b Bit11 %IXS.3 BOOL

e Bit12 “RINS. 4 BOOL

b Bit13 %IXS.5 BOOL

b Bit14 %IXS.6 BOOL

k) Bit15 INS.7 BOOL
% Anslog Input Ch#3 %IW6 UINT Analog Input Ch#3

| Reset Mapping Always update variables | Enabled 1 (use bus cyde task if notused in any task) ~
“g = Create new variable % =Map to existing varizble

Figure 101: Slave I/O Mapping Dialog

5.5.12.3.6. EtherCAT Slave - Status and Information

The Status tab of the EtherCAT Slave provides status information (e.g. *Running’, ’Stopped’) and device-specific diagnostic
messages, also on the used card and the internal bus system.

The Information tab, presented in the EtherCAT Slave configuration editor, shows, if available, the following general
information about the module: Name, Vendor, Type, Version, Categories, Order Number, Description, Image.

5.5.13. EtherNet/IP

The EtherNet/IP is a master-slave architecture protocol, consisting of an EtherNet/IP Scanner (master) and one or more
EtherNet/IP Adapters (slave).

The Ethernet/IP protocol is based on CIP (Common Industrial Protocol), which have two primary purposes: The transport
of control-oriented data associated with I/O devices and other system-related information to be controlled, such as configuration
parameters and diagnostics. The first one is done through implicit messages, while the second one is done through explicit
messages.

Their runtime system can act as either Scanner or Adapter. Each CPU’s NET interface support only one EtherNet/IP
instance and it can’t be instanced on an Ethernet expansion module.

An EtherNet/IP Adapter instance supports an unlimited number of modules or Input/Output bytes. In these modules, can
be added variables of types: BYTE, BOOL, WORD, DWORD, LWORD, USINT, UINT, UDINT, ULINT, SINT, INT, DINT,
LINT, REAL and LREAL.

ATTENTION

EtherNet/IP can’t be used together with Ethernet Redundant Mode or with Half-Cluster’s
redundancy.

ATTENTION

To avoid communication issues, EtherNet/[P Scanner can only have Adapters configured
within the same subnetwork.

181

\

Q
=
G

5. CONFIGURATION

5.5.13.1. EtherNet/IP

To add an EtherNet/IP Scanner or Adapter it’s needed to add an Ethernet Adapter under the desired NET. This can be done
through the command Add Device. Under this Ethernet Adapter it’s possible to add a Scanner or an Adapter.

Devices

=) Semome
= [pevice (Nx3008)
=& PLC Logic
=} Application
@ Bill of Materials
Configuration and Consumption
2 systemGiLs
+ 2 systemPOUs
+) UserGuLs
=2 userPOUs
StartPrg (PRG)
Userrg (PRG)
i) Library Manager
= @ Task Configuration
= @ MainTask
48] MainPrg
=-[@ configuration (Bus)
= [t Mx3008 (ux3008)
2 com1
% NET1
B NET2
2 NET3

B can

5 Devices [POUs

x| [Add Device

Name Ethernet

Action

© append device () Insert device

String for a full text search vendor | <All vendors>
Name Vendor Version Description
= [Fieldbuses

+- gt EtherCAT
+- EB Ethernet Adapter
= == EtherMet/IP
= BB Ethernet Adapter
@ CODESYS 4.2.0.0
& ﬁ} Home&Building Automation
- 5 profinet 10
+- [1=c s0870-5-104
+ [{ mopBus

Ethernet Link.

@ Group by category [Display all versions (for experts only) (] Display outdated versions

[Mame:Ethemet
Vendor: CODESYS
‘Categories: Ethernet Adapter, Ethernet Adapter, Ethernet Adapter,
HomeS3Buiding Automation ==
Version: 4.2.0.0 -
Order Number: - ~a
Description: Ethernet Link.

Append selected device as last child of
MET 1

® (You can select another target node in the navigator while this window is open.)

Add Device Close

Figure 102: Adding an Ethernet Adapter

182

Q
=
G

\

5. CONFIGURATION

Devices

= 5 Semiome
= [pevice (Nx3008)
= Eﬂ PLC Logic
= O Application
[sill of Materials
Configuration and Consumption
#- 2 SystemGyLs
#-[) SystemPOUs
{2 UserGils
= 2 UserPoUs
StartPrg (PRG)
UserPrg (PRG)
m Library Manager
= [Task Configuration
=58 MainTask
@ MainPrg
= i)l configuration (us)
=- [nx3008 (rex3008)
a comM1
=% NET1
[Ethernet (Ethernet)
B NET2
B NET3
kY

CAN

(@ Add Device

Name EtherNet IP_Adapter

Action
© Append device () Insert device A () Update device
String for a full text search Vendar <Al vendors> ~
Mame Vendor Version Description
= [Fieldbuses
= &= EtherMNet/IP

= £ EtherNet/IP Local Adapter
65 35 - Smart Software Solutions GmbH ~ 4.5.1.0
= &= EtherNet/IP Scanner
[T Ethernet/iP Scanner 35 - Smart Software Solutions GmbH 4.5.1.0
. 52 profinet 10

A device that we

Etherlet/IP Scal

@ Group by category [Display all versions (for experts only) [_] Display outdated versions

[mame:Etheriet/IP Adapter
Vendor: 35 - Smart Software Selutions GmbH
Categories: EtherNet/IP Local Adapter
Version: 4.5.1.0
Order Number: -
Description: A device that works as an EtherNet/IP Adapter.

E

Append selected device as last child of
Ethernet

(You can select another target node in the navigator while this window is open.)

% Devices [} POUs

Add Device

Close

Figure 103: Adding an EtherNet/IP Adapter or Scanner

183

\

Q
=
G

5. CONFIGURATION

5.5.13.2. EtherNet/IP Scanner Configuration

Devices + 2 x| [AddDevice x|
=3 Semiome -]
= [{ Device (NX3008) Mame Generic_EtherNet_IP_device
=B pLC Logic Action
=1k Application © append device () Insert device O Update device
B il of Materials
Configuration and Consumption String for a full text search Vendor <Al vendors> v
i _I SystenGils Name Vendor Versicn Descriptio
+ (2 systemPOUs
5 UserGiLs =[] Fieldbuses
= 2 userPous = = Etherliety?
StartPrg (FRG) = - <= EtherNet/IP Remote Adapter
UserPrg (FRE) i 35 - Smart Software Solutions GmbH ~~ 4.1.0.0 EtherNet/IF

i) Library Manager
= Task Configuration
=g ENIPScannerIOTask I
& EtherNet_IP_Scanner.10Cyde
= @ ENIPScannerServiceTask
@] EtherNet_IP_Scanner.ServiceCydle)
=% MainTask
@ MainPrg
= i) configuration (Bus)
=- il rex3008 (ux3008)
B coMm1
= % nET1
=-[{) Ethernet (Ethernet)
m EtherNet_IP_Scanner (EtherNet/IP|
% NETZ
B NET3
B can

@ Group by category [Display all versions {for experts only) [] Display outdated versions

m Name: Generic EtherNet/IP device
Vendor: 35 - Smart Software Solutions GmbH
Categories: EtherNet/IP Remote Adapter

Version: 4. 1.0, ==
Order Number: ;
Description: EtherMet/IP Target for a generic Device =Y

Append selected device as last child of
Etherlet_IP_Scanner

® (You can select another target node in the navigator while this window is open.)

Add Device Close

& Devices | [POUs

Figure 104: Adding an EtherNet/IP Adapter Under the Scanner

5.5.13.2.1. General

After open the Adapter declared under the Scanner it’s possible to configure it as needed. The first Tab is General, on it is
possible to configure the IP address and the Electronic Keying parameters. These parameters must be checked or unchecked if
the adapter being used is installed on MasterTool. Otherwise, if the Adapter used is of type Generic. The Vendor ID, Device
Type, Product Code, Large Revision, and Small Revision fields must be filled in with the correct vendor’s information and the
boxes checked as much as necessary. Altus, for its part, has its own ID, which is "1454".

184

Q
=
G

\

5. CONFIGURATION

[configuration (Bus) '[f] Generic_Etherliet_IP_device X |

General Address Settings
Potdes 210511 EtherMet/IP
Assemblies

User-Defined Parameatears Electronic Keying

EtherNet/IP IEC Objects () Cempatbilty check

Status Vendor ID 1 B chedkmatch
Device type 1 B check match
Information
Product code 1 B chedkmatch
Major revision 1 B ched:match
Minor revision 1 [chedk match

Restore Default Values

Figure 105: EtherNet/IP General Tab

5.5.13.2.2. Connections

The upper area of the Connections tab displays a list of all configured connections. When there is an Exclusive Owner
connection in the EDS file, it is inserted automatically when the Adapter is added. The configuration data for these connections
can be changed in the lower part of the view.

[#] configuration (Bus) (] Generic_EtherNet_IP_device X | hd (
General
ConnectionName RPI(ms) O-->TSize(Bytes) T-->OSize(Bytes) Proxy Config Size (Bytes) Target Config Size (Bytes) Connection Path
Connections 10 0 0 20 042400 2C 00 2C 00
Assemblies

User-Defined Parameters
EtherNet/IP [/0 Mapping
Etherlet/IP [EC Objects
Status

Information

Add Connection... Delete Connection Edit Connection. .
Configuration Data

Raw data values Show Parameter Groups Defaults

Parameters Value Unit DataType Minimum Maximum Default Help String

Figure 106: EtherNet/IP Connection Tab

5. CONFIGURATION

Notes:

For two or more EtherNet/IP Scanners to connect to the same Remote Adapter:

1. Only one of the Scanners can establish an Exclusive Owner connection.
2. The same value of RPI(ms) must be configured for the Scanners.

The configuration data is defined in the EDS file. The data is transmitted to the remote adapter when the connection is

opened.
. . Default .
Configuration Description Value Options
Request Packet Interval: ex- Multiple the Interval of the
RPI (ms) change interval of the input 10 ms Bus Cycle Task to which it
and output data. is associated
Size of the producer data
O -> T Size (Bytes) from the Scanner to the 0 0 - 65527
Adapter (O ->T)
Size of the consumer data
T -> O Size (Bytes) from the Adapter to the 0 0-65531
Scanner (T -> O)
Proxy Config Size (Bytes) E’irZ(;xy configuration data - -
Device Config Size (Bytes)]s)izzlce configuration - data - -
Automatically generated

Connection Path

Address of the configuration
objects - input objects - out-
put objects.

Automatically generated path

path, User-defined path and
Path defined by symbolic
name

Table 137: EtherNet/IP Connection parameters

To add new connections there is the button Add Connection... which will open the New connection window. In this window,
you can configure a new connection type from those predefined in the Adapter’s EDS or a connection from zero when using a

Generic device.

186

altus

5. CONFIGURATION

New Connection

© Generic connection (freely configurable)

Cancel

Connection Path Settings
O Automatically generated path
B Configuration assembly
Class ID: 16% 4 Instance ID: 165 0 Attribute ID: 16% 3

B Consuming assembly (0-—->T)
Class ID: 16% 4 Instance ID: 16% 0 Attribute ID: 16% 2

8 Producing assembly (T—>0)
ClassID: 16# 4 Instance ID: 16% 0 Attribute ID: 16% 3

() User-defined path
1 O Path defined by symbolic name

General Parameters

Connection Path 2004 2400 2C 00 2C 00

Trigger type Cydlic ~ RPI {ms) 10 B
Transpart type Exdusive owner ~ Timeout multiplier 4 ~
Scanner to Target (Qutput) Target to Scanner (Input)

S T s R P) —
N
Target config size {(bytes) D

Connection type Paint to Paint ~ Connection type Multicast v
Connection priority Scheduled ~ Connection priority Scheduled ~
Fixed Variable Fixed ~ Fixed/Variable Fixed ~
Transfer format 32-bit runfidie ~ Transfer format Pure data ~
Inhibit time (ms) 0 = Inhibit time (ms) o =

Heartheat multiplier |1 >

Figure 107: EtherNet/IP New Connection’s Window

5.5.13.2.3. Assemblies

The upper area of the Assemblies tab displays a list of all configured connections. When a connection is selected, the
associated inputs and outputs are displayed in the lower area of the tab.

Configuration {Bus) (] Generic_EtherNet_IP_device X -
G Connectons
Comnections ConnectionName ~ O-->TSize (Bytes) ~ T-->OSize (Bytes) Proxy Config Size (Bytes) Torget Config Size (Bytes)
Generic comnection 5
Assemblies

User-Defined Parameters

EtherNet/IP /O Mapping Consuming Assembly "Output” (0-->T) Producing Assembly “Tnput” (T-->0)
4k Add Delete | & Move Up Move Down 4k Add Delete | & Move Up Move Down
EtherNet/IP IEC Objects
Name DataType BitLength Unit Help String Name DataType BitLength Unit Help String
Status Cutput Param0 BYTE 8 Input_Param0 BYTE 8
Cutput Parami BYTE 8 Input Parami BYTE 8
Information Output_Param2 BYTE 8 Input_Param2 BYTE 8
Cutput Param3 BYTE 8 Input Param3 BYTE 8
Cutput Paramd BYTE 8 Input Paramd BYTE 8

Figure 108: EtherNet/IP Assemblies

187

\

Q
=
G

5. CONFIGURATION

Output Assembly and Input Assembly:

Configuration Description

Add Opens the dljllog box “Add
Input/Output

Delete Deletes all selected Input-
s/Outputs.
Moves the selected In-

Move Up put/Output within the
list.
The order in the list deter-

Move Down mines the order in the I/O
mapping.

Table 138: EtherNet/IP Assemblies tab

Dialog box Add Input/Output:

Configuration Description
Name Name of the input/output to
be inserted.
Help String
Type of the input/output to
Data type be inserted. This type also
define its Bit Length.
. This value must not be
Bit Length edited.

Table 139: EtherNet/IP “Add Input/Output” window

5.5.13.2.4. EtherNet/IP I/0O Mapping

I/0 Mapping tab shows, in the Variable column, the name of the automatically generated instance of the Adapter under
IEC Objects. In this way, the instance can be accessed by the application. Here the project variables are mapped to adapter’s
inputs and outputs.

5.5.13.3. [EtherNet/IP Adapter Configuration

The EtherNet/IP Adapter requires Ethernet/IP Modules. The Modules will provide I/O mappings that can be manipulated
by user application through %I or %Q addresses according to its configuration.

New Adapters can be installed on MasterTool with the EDS Files. The configuration options may differ depending on the
device description file of the added Adapter.

5.5.13.3.1. General

The first tab of the EtherNet/IP Adapter is the General tab. Here you can set the parameters of the Electronic Keying used
in the scanner to check compatibility. In this tab, you can also install the EDS of the device directly in the MasterTool device
repository or export it.

188 altus

5. CONFIGURATION

Configuration (Bus)

"] Ethertiet_IP_Adapter x

General EDS File

Tags Vendor name
Vendor ID

EtherNet/IP Adapter /O Mapping
Product name
EtherNet/IP Adapter IEC Objects
t 3 L Product code
Status Major revision

Minor revision
Information

Support ACD
Enable ACD

Enable LLDP

Install to Device Repository...

35 - Smart Software Solutions GmbH

1285 s

EtherMet/IP Adapter

120 2
1 o
1 o
a
O
a

Export EDS File...

Figure 109: EtherNet/IP General Tab

5.5.13.3.2. EtherNet/IP Adapter: I/O Mapping

Ethen'et/IP

On the EtherNet/IP I/0 Mapping tab, you can configure which bus cycle task the Adapter will execute.

5.5.13.4. EtherNet/IP Module Configuration

= configuration (Bus)

= (& Task Configuration
=-# ENIPAdapterOTask
] EtherNet_IP_Adapter.10Cyde
& ENIPAdapterServiceTask
& EtherNet_IP_Adapter. ServiceCyde!
= @ MainTask

& Mairprg

= [nx3008 (4x3008)

3 coM1

=% NET1
= m Ethernet (Ethernet)

Ei EtherMet_IP_Adapter (EtherNet/IP|

% NET2
2 NET3
2 can

Devices { [Add Device X
-) semtome
= [Device (Mx3008) Mame EtherlNet_IP_Module
=0 pLc Logic Action
=3 Application © append device () Insertdevice Fluodevice () Update device
[& il of Materials
Configuration and Consumption String for a full text search Vendor <Al vendors> -
8 systencus Name Vendor Version Description
+ [SystemPOUs
0 UserGiLs = Fieldbuses
12 UserPOUs = = EtherNet/IP
i) Library Manager = &= EtherNet/IP Module
@ 35 -Smart Software Solutions GmbH ~~ 4.1.0.0 A device that work

8 Group by category (] Display all versions (for experts only) [] Display outdated versions

[mame:EtherNet/IP Module
Vendor: 35 - Smart Software Solutions GmbH
Categories: EtherNet/IP Module
Version: 4.1.0.0
Order Humber: -
Description: A device that works as an EtherNet/IP Module.

=

Append

selected device as last child of

EtherNet_IP_Adapter

® (You can select another target node in the navigator while this window is open.)

5 Devices m POUs .

Add Device Close

Figure 110: Adding an EtherNet/IP Module under the Adapter

189

\

Q
=
G

5. CONFIGURATION

5.5.13.4.1. Assemblies

The parameters of the module’s General tab follow the same rules as described in the 138 and 139 tables.

Configuration (Bus) (] Etherfiet_IP_Module x -

Assemblies Consuming Assembly Consumed Data (Instance 16%64) ~ | Produdng Assembly Produced Data (Instance 16£65) v

Consuming Assembly "Consumed Data™ (O—>T) Producing Assembly “Produced Data™ (T-->0)
4k Add Delete Move Up Move Down 4k Add Delete Maove Up Maove Down

EtherNet/IP Madule IEC Objects

IELE Name DataType Bitlength Unit Help String Mame DstaType Bitlength Unit Help String

Generic Parameter BYTE El Generic Parameter BYTE 8
Generic Parameter BYTE
Generic Parameter BYTE
Generic Parameter BYTE
Generic Parameter BYTE

Information
Generic Parameter BYTE

Generic Parameter BYTE
Generic Parameter BYTE
Generic Parameter BYTE

@ @ o ow
@ @ oo oW

Figure 111: EtherNet/IP Module Assemblies tab

5.5.13.4.2. EtherNet/IP Module: I/O Mapping

The I/0O Mapping tab shows, in the Variable column, the name of the automatically generated Adapter instances. In this
way, the instance can be accessed by the user application.

5.5.14. 1EC 60870-5-104 Server

As select this option at MasterTool, the CPU starts to be an IEC 60870-5-104 communication server, allowing connection
with up to three client devices. To each client the driver owns one exclusive event queue with the following features:

= Size: 1000 events
= Retentivity: non retentive
= Overflow policy: keep the newest

To configure this protocol, it is needed to do the following steps:

= Add a protocol IEC 60870-5-104 Server instance to one of the available Ethernet channel. To realize this procedure
consult the section Inserting a Protocol Instance

= Configure the Ethernet interface. To realize this procedure consult the section Ethernet Interfaces Configuration

= Configure the general parameters of protocol IEC 60870-5-104 Server with connection mode Port or IP, and the TCP
port number when the selected connection mode is IP

» Add and configure devices, defining the proper parameters

= Add and configure the IEC 60870-5-104 mappings, specifying the variable name, type of object, object address, size,
range, dead band and type of dead band

= Configure the link layer parameters, specifying the addresses, communication time-outs and communication parameters

= Configure the application layer parameters, synchronism configuration, commands, as well as transmission mode of
Integrated Totals objects

The descriptions of each configuration are related below, in this section.

5.5.14.1. Type of data

The table below shows the supported variable type by the Nexto Series CPU for each protocol IEC 60870-5-104 data type.

190

]
=
G

\

5. CONFIGURATION

Object Type IEC Variables Type
Single Point Information (M_SP_NA) BOOL
BIT
Double Point Information (M_DP_NA) DBP
Step Position Information (M_ST_NA) USINT
Measured Value, normalized value (M_ME_NA) INT
Measured Value, scaled value (M_ME_NB) INT
INT
UINT
Measured Value, short floating point value (M_ME_NC) DINT
UDINT
REAL
Integrated Totals (M_IT_NA) INT
DINT
Bitstring Information (M_BO_NA) DWORD
Single Command (C_SC_NA) BOOL
BIT
Double Command (C_DC_NA) DBP
Regulating Step Command (C_RC_NA) DBP
Setting Point Command, normalized Value (C_SE_NA) INT
Setting Point Command, scaled Value (C_SE_NB) INT
Setting Point Command, short floating point Value (C_SE_NC) REAL
Bitstring Command (C_BO_NA) DWORD

Table 140: Variables Declaration to IEC 60870-5-104

Notes:

Regulating Step Command: The Lower and Higher object states of the C_RC_NA are associated respectively to OFF
and ON internal DBP type states.

Step Position Information: According to item 7.3.1.5 of Standard IEC 60870-5-101, this 8 bit variable is compose by two
fields: value (defined by the 7 bits less significant) and transient (defined as the most significant bit, which indicates when the
measured device is transitioning).

Below, there is a code example for fields manipulation in an USINT type variable. Attention, because this code doesn’t
consist if the value is inside the range, therefore this consistency remains at user’s charge.

PROGRAM UserPrg

VAR

usiVTI: USINT; // Value with transient state indication, mapped for the Client
siValue: SINT; // Value to be converted to VTI. Must be between -64 and +63
bTransient: BOOL; // Transient to be converted to VTI

END_VAR

usiVTI := SINT_TO_USINT (siValue) AND 16#3F;
IF siValue < 0 THEN

usiVTI := usiVTI OR 16#40;

END_TF

IF bTransient THEN

usiVTI := usiVTI OR 16#80;

END_TF

191 altus

5. CONFIGURATION

PROFIBUS: Except by the digital objects, the protocol IEC 60870-5-104’s analog and counters objects data types are
different from PROFIBUS analogs and counters modules data types, not being possible to map such PROFIBUS variable types
directly to IEC 60870-5-104 clients.

In these cases it is needed to create an intermediary variable, to be mapped in the IEC 60870-5-104 client, and properly
convert the types, as can be observed on the example’s code below.

PROGRAM UserPrg

VAR
iAnalogIn: INT;
iAnalogOut: INT;
diCounter: DINT;
END_VAR

// RAnalog input conversion from WORD (PROFIBUS) to INT (IEC104)
iAnalogIn:= WORD_TO_INT (wNX6000in00) ;

// Analog output conversion from INT (IEC104) to WORD (PROFIBUS)
wNX61000ut00:= INT_TO_WORD (iAnalogOut) ;

// Counter conversion from WORDs high+low (PROFIBUS) to DINT (IEC104)
diCounter:= DWORD_TO_DINT (ROL (WORD_TO_DWORD (WNX1005cnt00H), 16) OR wNX1005cntOO0L

)i

5.5.14.2. Double Points

The double digital points are used to indicate equipment position, such as valves, circuit breakers and secctioners, where
the transition between open and close states demand a determined time. Can thus indicate an intermediary transition state
between both final states.

Double digital points are also used as outputs and, in an analogous way, it is necessary to keep one of the outputs enabled
for a certain time to complete the transition. Such actuation is done through pulses, also known by trip/close commands, with
determined duration (enough to the switching of the device under control).

Consult the Double Points section of Utilization Manual for information about double digital points through DBP data
type.

Once the Nexto Series digital input and output modules don’t support DBP points mapping, some application trickery
are needed to make it possible. Remembering that is also not possible to use the PulsedCommand function, defined at the
LibRtuStandard library, to operate the Nexto Series digital double points.

5.5.14.2.1. Digital Input Double Points

For the digital input modules it is needed two auxiliary variables’ declaration, to be mapped on the digital input module,
besides the double point that is wished to map on the server:

= The double point value variable: type DBP
= The simple point OFF/TRIP value variable: type BOOL
= The simple point ON/CLOSE value variable: type BOOL

Configuration {(Bus) @ IEC104 X
= 1| vaR GLOBAL
2 StDEE: DEE; // M DP NA
3 bDBE_OFF: BOOL;
Z bDBF_ON: BOOL;

Figure 112: Double Point Variables Declaration Example

192

]
=
G

\

5. CONFIGURATION

Done the variables declaration, it is necessary to create a link between the value variables and the digital input module
quality, through the CPU’s Internal Points tab:

8 configuration Bus) [w3030 x| |fj cient | g EC04 | mx01 UserPrg |

==y

General Parameters Variable Name Quality

IEC104.stBOP I0Qualities, QUALITY _MX1001[2]

Bus Event Configuration

Synchronism

Internal Points

S0E Configuration

Figure 113: Double Point Variables Attribution to Internal Points

The double point value variable must be mapped at the server IEC 60870-5-104 driver, and both simple variables at the

Nexto Series digital input module (in that example, a NX1001). Typically the OFF (TRIP) state is mapped to the even input
and the ON (CLOSE) state to the odd input.

[configuration (5us) NX3030 Client x [g IEC104 NK1001 UserPrg

Mappings Value Variable Ohbject Type %fss Size Range
Link Layer IEC104.5tBDP Double Point Information -3 1 3.3

(] -

ApplicationLayer

Figure 114: Double Point Variables Mapping on the Client IEC 60870-5-104

[configuration (Bus) [mxs030 [cient |'4gh EC04 | maoo1l x UserPrg

Process Data Channels

Variable Mapping Channel Address Type

Module Parameters =t Digital Inputs - Byte 0 (@ %180 BYTE

. oL Input 00 %l¥0.0 BOOL

Bus 1/0 Mapping Input 01 %I¥0,1 BOOL

SR 4% Application.IEC 104.bDEP_OFF i Input 02 %hke2 BOOL

_"“'————-________ 4% Application.IEC104.bDEP_ON] Input 03 %e-3 BOOL

i Input 04 %I¥0.4 BOOL

Input 05 %4I¥0.5 BOOL

Input 06 %IX0.6 BOOL

Input 07 %4I¥0.7 BOOL

Digital Inputs - Byte 1 (@ %IB1 BYTE

Figure 115: Variables Mapping at the Module Inputs

At last, the user must insert two code lines in its application, to be cyclically executed, to simple variables value attribution
to double point:

193 altus

5. CONFIGURATION

= DBP value variable, index ON, receive simple point ON value
= DBP value variable, index OFF, receive simple point OFF value

T8 Configuration (Bus) [g TEC104 | mx3030 || dcient |7 nx1001 UserPrg X |
(#The main code inserted by the user and executed associated with the MainTask must be inserted into this POU. #)
PROGRAM UserPrg

VAR

END VAR

W R

//Double Points tyeatment
IEC104.stDBP.OFF := IEC104.bDBF_OFF:
IEC104.stDBP.ON := IEC104.bDBF_ON;|

W R

Figure 116: Variables’ Values Attribution to the Double Point

5.5.14.2.2. Digital Output Double Points

For the digital output modules it must be used the CommandReceiver function block to intercept double points actuation
commands originated from the clients IEC 60870-5-104. Consult the section Interception of Commands Coming from the
Control Center for further information.

The example code below, POU CmdRcv, treats pulsed commands received from clients for a digital double point, mapped
in a NX2020 module. Besides the following ST code it is need to map a DBP point in Nexto’s IEC 60870-5-104 server.

|8 Configuration (Bus) [MX3030 [Client x g IEC104

Object 5 R Counter Dead Band Dead Band Select Short Pulse Lang Pulse
Address = L Variable Variable Type Reguired (ms) (ms)

R » Doubie Command |1 [1 [11] | Disabled - |Fake 1000 2000

Mappings Value Variable “ Object Type

- - - -

ApplicationLayer

Figure 117: Mapping of Digital Output Double Point variables on IEC 60870-5-104 Client

PROGRAM CmdRcv

VAR

CmdReceive: CommandReceiver; // Interceptor Instance
fbPulsedCmd: PulsedCommandNexto; // Pulsed Command Instance
byResult: BYTE; // Pulsed command result

dbpIEC104: DBP; // Variable mapped in the IEC 104
bSetup: BOOL:= TRUE; // Interceptor initial setup
END_VAR

// Executes the function configuration in the first cycle
IF bSetup THEN
CmdReceive.dwVariableAddr:
CmdReceive.bExec:= TRUE;
CmdReceive.eCommandResult:

ADR (dbpIEC104) ;

COMMAND_RESULT . NONE;

CmdReceive.dwTimeout:= 256 x 10;
bSetup:= FALSE;
END_TIF

// In case a command is captured:
IF CmdReceive.bCommandAvailable THEN

// Treats each one of the possible commands

194 altus

5. CONFIGURATION

CASE CmdReceive.sCommand.eCommand OF
COMMAND_TYPE .NO_COMMAND :

// Inform that there is an invalid command.
// Does nothing and must move on by time-out.

COMMAND_TYPE.SELECT :

// Treats only commands for double points
IF CmdReceive.sCommand.sSelectParameters.sValue.eParamType =
DOUBLE_POINT_COMMAND THEN
// Returns command finished with success
// (controlled by IEC104 protocol)
byResult:= 7;
ELSE
// Returns command not supported
byResult:= 1;
END_TF

COMMAND_TYPE.OPERATE:

// Treats only commands for double points
IF CmdReceive.sCommand.sOperateParameters.sValue.eParamType =
DOUBLE_POINT_COMMAND THEN
// Pulse generation in outputs
IF CmdReceive.sCommand.sOperateParameters.sValue.sDoublePoint.bValue THEN
// Executes TRIP function
fbPulsedCmd (
byCmdType:= 101,
byPulseTime:= DWORD_TO_BYTE (CmdReceive.sCommand.sOperateParameters.
sValue.sDoublePoint.sPulseConfig.dwOnDuration/10),
ptDbpVarAdr:= ADR (dbpIEC104),
stQuality:= IOQualities.QUALITY NX2020[4],
byStatus=> byResult) ;
ELSE
// Executes CLOSE function
fbPulsedCmd (
byCmdType:= 102,
byPulseTime:= DWORD_TO_BYTE (CmdReceive.sCommand.sOperateParameters.
sValue.sDoublePoint.sPulseConfig.dwOffDuration/10),
ptDbpVarAdr:= ADR (dbpIEC104),
stQuality:= IOQualities.QUALITY NX2020[5],
byStatus=> byResult) ;
END_TF
ELSE
// Returns command not supported
byResult:= 1;
END_TF

COMMAND_TYPE .CANCEL:
// Returns command finished with success

// (controlled by IEC104 protocol)
byResult:= 7;

195

Q

\

e
G

5. CONFIGURATION

END_CASE

// Treats the pulsed command function result

// and generates the answer to the intercepted command

CASE byResult OF

1: // Invalid type of command
CmdReceive.eCommandResult := COMMAND_RESULT.NOT_SUPPORTED;
CmdReceive.bDone:= TRUE;

2: // Invalid input parameters
CmdReceive.eCommandResult := COMMAND_RESULT.INCONSISTENT_ PARAMETERS;
CmdReceive.bDone:= TRUE;

3: // Parameter change in running
CmdReceive.eCommandResult := COMMAND_RESULT.PARAMETER_CHANGE_IN_EXECUTION;
CmdReceive.bDone:= TRUE;

4: // Module did not answered the command (absent)
CmdReceive.eCommandResult := COMMAND_RESULT.HARDWARE_ERROR;
CmdReceive.bDone:= TRUE;

5: // Command started and in running (does not returns nothing)

6: // Another command has been sent to this point and it is running
CmdReceive.eCommandResult := COMMAND_RESULT.LOCKED_BY_ OTHER_CLIENT;
CmdReceive.bDone:= TRUE;

7: // Command finished with success
CmdReceive.eCommandResult := COMMAND_RESULT.SUCCESS;
CmdReceive.bDone:= TRUE;

END_CASE

END_TF
CmdReceive () ;

IF CmdReceive.bDone THEN
CmdReceive.bDone:= FALSE;
END_TF

As can be observed in the previous code, to help in the pulse generation in Nexto’s digital double outputs, it was created
and used a function block equivalent to PulsedCommand function of library LibRtuStandard. The PulsedCommandNexto()
function block shows up coded in ST language.

FUNCTION_BLOCK PulsedCommandNexto

VAR_INPUT
byCmdType: BYTE; // command type:
// 100 = status
// 101 = close/on
// 102 = trip/off
byPulseTime: BYTE; // Pulse duration (in hundredths of second)
ptDbpVarAdr: POINTER TO DBP; // DBP variable address (can be mapped)
stQuality: QUALITY; // DBP point quality (digital module)
END_VAR
VAR_OUTPUT
bON: BOOL; // 0dd output mapped on Nexto DO module
bOFF: BOOL; // Even output mapped on Nexto DO module
byStatus: BYTE:= 7; // Function return:
// 1 = invalid command
// 2 = Time out of valid range (2..255)

196

\

Q
=
G

5. CONFIGURATION

// 3 = command changed in running time
// 4 = module did not answer to the command (absent)
// 5 = command started or running
// 6 = There is already an active command on this point
// 7 = pulse command finished with success
END_VAR
VAR
byState: BYTE; // Function block state
udiPulseEnd: UDINT; // Pulse end instant
END_VAR

// PulsedCommandNexto state machine
CASE byState OF

0: // Init state, ready to receive commands:
CASE byCmdType OF

100:// Just returns the last status

101: // Execute pulse ON:
// Valids the pulse duration
IF byPulseTime > 1 THEN
// Check if there is already an active command on this point
IF ptDbpVarAdr”.ON OR ptDbpVarAdr”.OFF THEN
// Returns that there is already an active command
byStatus:= 6;
ELSE
// Enables CLOSE output
ptDbpVarAdr”.ON:= TRUE;
ptDbpVarAdr”.OFF:= FALSE;
// Next state: execute pulse ON
byState:= byCmdType;
// Returns started command
byStatus:= 5;
END_TIF
ELSE
// Returns the out of range pulse
byStatus:= 2;
END_TIF

102: // Execute pulse OFF
// Valids the pulse duration
IF byPulseTime > 1 THEN
// Check if there 1is already an active command on this point
IF ptDbpVarAdr”.ON OR ptDbpVarAdr”.OFF THEN
// Returns that there is already an active
byStatus:= 6;
ELSE
// Enables TRIP output
ptDbpVarAdr”.ON:= FALSE;
ptDbpVarAdr” .OFF := TRUE;
// Next step: execute pulse OFF
byState:= byCmdType;
// Returns started command
byStatus:= 5;
END_TF

197

L
[~

\

5. CONFIGURATION

ELSE
// Returns the out of range pulse
byStatus:= 2;
END_IF
ELSE
// Returns invalid command
byStatus:= 1;
END_CASE

// Memorizes the instant of the pulse end
udiPulseEnd:= SysTimeGetMs () + BYTE_TO_UDINT (byPulseTime) x 10;

101, 102:// Continues the pulse execution ON/OFF
// It returns that the command is running
byStatus:= 5;
// Checks the running parameter change
IF byCmdType <> 100 AND byCmdType <> byState THEN
// Returns the running parameter change
byStatus:= 3;
END_TIF
// Checks pulse end
IF SysTimeGetMs () >= udiPulseEnd THEN
// Disable TRIP and CLOSE outputs
ptDbpVarAdr” .ON:= FALSE;
ptDbpVarAdr” .OFF:= FALSE;
// Returns finished command, only if the command has not changed
IF byCmdType = 100 OR byCmdType = byState THEN
byStatus:= 7;
END_TF
// Next state: initial
byState:= 0;
END_TF

END_CASE

// Checks digital module (DBP point) quality

IF stQuality.VALIDITY <> QUALITY_VALIDITY.VALIDITY_GOOD THEN
// Disable TRIP and CLOSE outputs

ptDbpVarAdr” .ON:= FALSE;

ptDbpVarAdr” .OFF:= FALSE;

// Returns absent module

byStatus:= 4;

// Next state: initial

byState:= 0;

END_TF

// Copy DBP output states to the simple outputs
bON:= ptDbpVarAdr”.ONj;
bOFF := ptDbpVarAdr”.OFF;

198

\

Q
=
G

5. CONFIGURATION

5.5.14.3. General Parameters

To the General Parameters configuration of an IEC 60870-5-104 Server according to figure below follow the table below
parameters:

Configuration (Bus) ﬂj IEC_G0B70_5_ 104 Server X
Settings

Connection Mode |P'nrt vl

TCP Port 2404

Figure 118: Server IEC 60870-5-104 General Parameters Screen

Parameter Description Factory De- Possibilities
fault
Set the connection mode
Connection Mode with the Connected Client Port Port
modules. Ip

Defines which PLC’s TCP
port number will be used to
communicate with the Con-
TCP Port . 2404 1 to 65535
nected Client modules. In
case the “Connection Mode”

field is set as "IP".

Table 141: IEC 60870-5-104 Server General Parameters Configuration

5.5.14.4. Data Mapping

To configure the IEC 60870-5-104 Server data relation, viewed on figure below follow the parameters described on table
below:

Mappings s . Object Counter Dead Band Dead Select Short Long
pene IR Object Type Address Size Range yariable Variable Band Type Required Pulse (ms) Pulse (ms)

Link Layer g _ M M -

ApplicationLayer

Figure 119: IEC 60870-5-104 Server Mappings Screen

5. CONFIGURATION

tal command

Parameter Description Factory De- Possibilities
fault
Value Variable Symbolic variable name - illa;n; OO[fJ a;);/gl\a;ile declared
Single Point Information
Double Point Information
Step Position Information
Measured Value (Normal-
) ized)
Object Type IEC 60870-5 f104 object - Measured Value (Scaled)
type configuration Measured Value (Short
Floating Point)
Integrated Totals
Bitstring Information (32
Bits)
Single Command
Double Command
Regulating Step Command
Setting Point Command
(Normalized)
Setting Point Command
(Scaled)
Setting Point Command
(Short Floating Point)
Bitstring Command (32
Bits)
Object Address IEC 60870-5-104 mapping - I to 65535
first point’s index
Specifies the maximum data
Size quantity that' an IEC 60870-) 1 to 86400000
5-104 mapping will can ac-
cess
Configured data address
Range - -
range
Name of the symbolic vari- Name of a variable declared
Counter Variable able which will hold the - in a POU, GVL or counter
counter variable’s value module
Name of the symbolic vari- .
Dead Band Variable able which will hold the - Name of a variable declared
; ina POU or GVL
dead band’s value
Defines the dead band type . Absolute
Dead Band Type to be used in the mapping ’ Disabled Disabled
Integrated
Defines if it is required a
Select Required previous select to run a com- False True
mand False
Defines the short pulse time
Short Pulse (ms) to an IEC 60870-5-104 digi- 1000 1 to 86400000
tal command
Defines the long pulse time
Long Pulse (ms) to an [EC 60870-5-104 digi- 2000 1 to 86400000

Table 142: IEC 60870-5-104 Server Mappings Configuration

200

altus

5. CONFIGURATION

Notes:

Value Variable: When a read command is sent, the return received in the answer is stored in this variable. When it is a
write command, the written value is going to be stored in that variable. The variable can be simple, array, array element or can
be at structures.

Counter Variable: This field applies only on mapping of Integrated Totals type objects, being this the controller variable
to be managed on process. It must has same type and size of the variable declared on Value Variable column, which value is
going to be read, or reported to, the client in case of events.

When the Counter Variable has a quality variable associated, to the quality to be transferred
to the frozen variable at freeze command, it must be associated a quality variable to the
frozen one. This procedure must be done through Internal Points tab.

Dead Band Variable: This field applies only to input analog variables (Measured Value type objects) mappings. It must
has same type and size of the variable declared on Value Variable column. New dead band variable values are going to be
considered only when the input analog variable change its value.

Dead Band Type: The configuration types available to dead band are:

Function type Configuration | Description

In this option, any value change in a
Disabled group’s point, as smaller it is, generates an
event to this point.

In this option, if the group’s point value ab-
solute change is bigger than the value in
“Dead Band” field, an event is going to be
generated to this point.

In this option, if the absolute of the inte-
gration of the group’s point value change
is bigger than the value in “Dead Band”
field, an event is going to be generated to
this point. The integration interval is one
second.

Dead Band Type Absolute

Integrated

Table 143: IEC 60870-5-104 Server Mappings Dead Band Types

Short Pulse and Long Pulse: At the define of short and long pulses duration time it must be considered the limits
supported by the device which will treat the command. For example, case the destiny is an output card, which is not supported
in native by Nexto Series. It must be checked at the module’s Datasheet what the minimum and maximum times, as well as
the resolution, to running the pulsed commands.

5.5.14.5. Link Layer

To the IEC 60870-5-104 Server link layer parameters configuration, shown on figure below, follow the described parameters
on table below:

201

Q
=
G

\

5. CONFIGURATION

Mappings

Link Layer

ApplicationLayer

Link Layer

Port Number

2404

Common Address of ASDU |1

Time-out t1 (s)

Time-out t2 (s)

15

10

Time-out t3 (s) 20
Parameter k (APDUs) 12
Parameter w (APDUSs) 3

Figure 120: Server IEC 60870-5-104 Link Layer Configuration Screen

Parameter

Description

Factory De-

fault

Possibilities

Port Number

Listened port address to
client connection. Used
when the client connection
isn’t through IP

2404

1 to 65535

IP Address

Connected client IP, used
when the client connection
is through IP

0.0.0.0

1.0.0.1 to 223.255.255.254

Common Address

ASDU

of

IEC 60870-5-104 address,
if the connected client is
through IP

1 to 65534

Time-out t1 (s)

Time period (in seconds)
that the device waits the re-
ceiving of an acknowledge
message after sent an APDU
message type I or U (data),
before close the connection

15

1to 180

Time-out t2 (s)

Time period (in seconds)
that the device waits to
send a watch message (S-
Frame) acknowledging the
data frame receiving

10

1 to 180

Time-out t3 (s)

Time period (in seconds) in
what is going to be sent a
message to link test in case
there is no transmission by
both sides

20

1 to 180

Parameter k (APDUs)

Maximum number of data
messages (I-Frame) trans-
mitted and not acknowl-
edged

12

1to 12

Parameter w (APDUs)

Maximum number of
data messages (I-Frame)
received and not acknowl-
edged

1to8

Table 144: IEC 60870-5-104 Server Link Layer Configuration

202

altus

5. CONFIGURATION

Note:

The fields Time-out t1 (s), Time-out t2 (s) and Time-out t3 (s) are dependents between themselves and must be configured
in a way that Time-out t1 (s) be bigger than Time-out 12 (s) and Time-out t3 (s) be bigger than Time-out t1 (s). If any of these
rules be not respected, error messages are going to be generated during the project compilation.

For slow communication links (example: satellite communication), the parameters Time-out
t1 (s), Time-out t2 (s) and Time-out t3 (s) must be properly adjusted, such as doubling the
default values of these fields.

5.5.14.6. Application Layer

To configure the IEC 60870-5-104 Server application layer, shown on figure below, follow the parameters described on
table below:

Configuration (Bus) ﬁ Client x

Mappings Synchronism
[] Enable Time Synchronization

Link Layer Time Synchronization Command Received in Local Time

ApplicationLayer Timestamp

[] use Local Time instead of UTC Time

Commands

Maximum Time Between Select and Operate (s) |5 =

Event

Transmission Mode of Analog Input Events | All Events (SOE) w
Integrated Totals Type
Transmission Mode | Freeze by counter-interrogation command, transmit spontaneously w

Figure 121: Server IEC 60870-5-104 Application Layer Configuration Screen

Parameter Description Factory De- Possibilities
fault
Enable Time Synchroniza- | Option to Enable/Disable Disabled Disabled
tion time sync request Enabled
Time Synchronization | (000 0 S .
Command Received in nization command 1}r,1 local Enabled Disabled
Local Time zation comma oca Enabled
time
Germ Option to Enable/Disable
gsTeCL;:;LTlme instead of the time stamp in local time | Disabled Disabled
for events Enabled
Time period in which the
selection command will
Maximum Time Between | " active (the cgunt
starts from the received | 5 1to 180
Select and Operate (s) .
selection command ac-
knowledge) waiting the
Operate command

203

Q
=
G

\

5. CONFIGURATION

Parameter Description ?:Lclttory De- Possibilities
Transmission Mode of | Analog input events trans- | All Events All Events (SOE)
Analog Input Events mission mode (SOE) Most Recent Event
Freeze by
counter-
Frozen counters transmis- | interrogation Freeze . by counter-
Transmission Mode sion mode (Integrated To- | command, interrogation command,
tals) transmit transmit spontaneously
sponta- Freeze and transmit by
neously counter-interrogation
command

Table 145: IEC 60870-5-104 Server Application Layer Configuration

Notes:

Enable Time Synchronization: Once enabled, allow the IEC 60870-5-104 Server adjust the CPU’s clock when a sync
command is received.

Time Synchronization Command Received in Local Time: When enabled, the IEC 60870-5-104 Server adjusts the CPU
clock by treating the time received in the synchronization command as local time. Otherwise, this time is considered UTC.

Use Local Time instead of UTC Time: Once enabled, the time stamp of the events generated by IEC 60870-5-104 Server
will be sent according to the CPU’s local time.

When the time sync option is checked in more than one server, the received times from
different servers will be overwritten in the system clock in a short time period, being able to
cause undesirable behaviors due to delays on messages propagation time and system load.

Transmission Mode of Analog Inputs Events: The Analog Inputs Events transmission modes available are the following:

Function Type
Transmission Mode
of Analog Input
Events

Configuration Description

All analog events generated are going to be

All Events (SOE) _—

Most Recent Event

It is sent only the most recent analog event.

Table 146: IEC 60870-5-104 Server Transmission Modes of Analog Inputs Events

204

Q
=
G

\

5. CONFIGURATION

Transmission Mode: The available transmission modes of the frozen counters (Integrated Totals) are the following:

Function Type Configuration Description

Equivalent to the counters acquisition D
Mode (Integrated Totals) defined by Stan-
dard IEC 60870-5-101. In this mode,
the control station’s counters interrogation
commands, freeze the counters. Case the
frozen values have been modified, they are
reported through events.

Equivalent to the counters acquisition C
Mode (Integrated Totals) defined by Stan-
Freeze and trans- | dard IEC 60870-5-101. In this mode,
mit by counter- | the control station’s counters interrogation
interrogation com- | commands, freeze the counters. The sub-
mand sequent counters interrogation commands
(read) are sent by the control station to re-
ceive the frozen values.

Freeze by counter-
interrogation com-
mand, transmit
spontaneously

Transmission Mode

Table 147: IEC 60870-5-104 Server Transmission Modes of the Frozen Counters

ATTENTION

The Standard IEC 60870-5-104, section Transmission control using Start/Stop, foresee the
commands STARTDT and STOPDT utilization to data traffic control between client and
server, using simple or multiple connections. Despite Nexto supports such commands, its
utilization isn’t recommended to control data transmission, mainly with redundant CPUs,
because such commands aren’t synchronized between both CPUs. Instead of using multiple
connections between client and Nexto server, it’s suggested the use of NIC Teaming re-
sources to supply (physically) redundant Ethernet channels and preserve the CPU resources
(CPU control centers).

5.5.14.7. Server Diagnostic

The IEC 60870-5-104 Server protocol diagnostics are stored in T_DIAG _IEC104_SERVER_1 type variables, which are

described in table below:

Diagnostic variable of type Size el o
T_DIAG_IEC104_SERVER_1.*

Command bits, automatically reset:
tCommand.bStop BOOL Disable Driver
tCommand.bStart BOOL Enable Driver
tCommand.bDiag_01_Reserved BOOL Reserved
tCommand.bDiag_02_Reserved BOOL Reserved
tCommand.bDiag_03_Reserved BOOL Reserved
tCommand.bDiag_04_Reserved BOOL Reserved
tCommand.bDiag_05_Reserved BOOL Reserved
tCommand.bDiag_06_Reserved BOOL Reserved

Diagnostics:
tClient_X.bRunning BOOL IEC 60870-5-104 Server is running
205

]
=
G

\

5. CONFIGURATION

Diagnostic variable of type Size e
T_DIAG_IEC104_SERVER_1.*

Communication channel closed. Server
tClient_X.eConnectionStatus. won’t accept connection request. ENUM
CLOSED value (0)

Server is listening to the configured port
tClient_X.eConnectionStatus. ENUM(BYTE)| and there is no connected clients. ENUM
LISTENING value (1)
tClient_X.eConnectionStatus. Connected client. ENUM value (2)
CONNECTED
tClient_X.tQueueDiags. BOOL Client queue is overflowed
bOverflow
tClient_X.tQueueDiags. WORD Configured queue size
wSize
tClient_X.tQueueDiags. WORD Events number in the queue
wUsage
tClient_X.tQueueDiags. DWORD Reserved
dwReserved_0
tClient_X.tQueueDiags. DWORD Reserved
dwReserved_1
tClient_X.tStats.wRXFrames WORD Number of received frames
tClient_X.tStats.wTXFrames WORD Number of sent frames

Communication errors counter, including
tClient_X.tStats.wCommErrors WORD physical layer, link layer and transport

layer errors.
tClient_X.tStats.dwReserved_0 DWORD Reserved
tClient_X.tStats.dwReserved_1 DWORD Reserved

Table 148: IEC 60870-5-104 Server Diagnostics

5.5.14.8. Commands Qualifier

The standard IEC 60870-5-104 foresee four different command qualifiers for the objects Single Command, Double Com-
mand and Regulating Step Command, all supported by the Nexto Server.

Each object type has a specific behavior to each command qualifier, as can be seen on the table below.

Qualifier

Protocol IEC 60870-5-104 object type

Single Command

Double Command

Regulating Step Command

No additional defini-
tion (default)

Same behavior of persis-
tent qualifier.

Same behavior of short
pulse qualifier.

Same behavior of short pulse
qualifier.

Short pulse duration

Requires command in-
terception to application
treatment. Other way
it will return a nega-
tive acknowledge mes-
sage (fail).

Long pulse duration

Requires command in-
terception to application
treatment. Other way
it will return a nega-
tive acknowledge mes-
sage (fail).

Requires command interception
to application treatment. Other
way it will return a negative ac-
knowledge message (fail).

206

altus

5. CONFIGURATION

Qualifier Protocol IEC 60870-5-104 object type
Single Command Double Command Regulating Step Command

The output is going to
be on or off and that
will remain until new
command, according to
value (ON or OFF) com-
manded by the client.

Persistent output

Table 149: IEC 60870-5-104 Server Commands Qualifier

Note:

Command Interception: For further information about commands interception of IEC 608705-104 clients, consult section
Interception of Commands Coming from the Control Center, implemented through CommandReceiver function block.

5.5.15. PROFINET Controller

For correct use of the PROFINET Controller protocol, it is necessary to consult the manual MU214621 - Nexto Series
PROFINET Manual .

5.6. Communication Performance
5.6.1. MODBUS Server

The MODBUS devices configurable in the Nexto CPU run in the background, with a priority below the user application
and cyclically. Thus, their performance varies depending on the remaining time, taking into account the difference between the
interval and time that the application takes to run. For example, a MODBUS device in an application that runs every 100 ms,
with a running time of 50 ms, will have a lower performance than an application running every 50 ms to 200 ms of interval.
It happens because in the latter case, the CPU will have a longer time between each MainTask cycle to perform the tasks with
lower priority.

It also has to be taken into account the number of cycles that the device, slave or server takes to respond to a request. To
process and transmit a response, a MODBUS RTU Slave will takes two cycles (cycle time of the MODBUS task), where as a
MODBUS Ethernet Server task takes only one cycle. But this is the minimum time between receipt of a request and the reply.
If the request is sent immediately after the execution of a task MODBUS cycle time may be equal to 2 or 3 times the cycle
time for the MODBUS slave and from 1 to 2 times the cycle time for the MODBUS server.

In this case: Maximum Response Time = 3 * (cycle time) + (time of execution of the tasks) + (time interframe chars) +
(send delay).

For example, for a MODBUS Ethernet Server task with a cycle of 50 ms, an application that runs for 60 ms every 100 ms,
the server is able to run only one cycle between each cycle of the application. On the other hand, using the same application,
running for 60 ms, but with an interval of 500 ms, the MODBUS performs better, because while the application is not running,
it will be running every 50 ms and only each cycle of MainTask it will take longer to run. For these cases, the worst performance
will be the sum of the Execution Time of the user application with the cycle time of the MODBUS task.

For the master and client devices the operating principle is exactly the same, but taking into account the polling time of the
MODBUS relation and not the cycle time of the MODBUS task. For these cases, the worst performance of a relationship will
be performed after the polling time, along with the user application Execution Time.

It is important to stress that the running MODBUS devices number also changes its performance. In an user application
with Execution Time of 60 ms and interval of 100 ms, there are 40 ms left for the CPU to perform all tasks of lower priority.
Therefore, a CPU with only one MODBUS Ethernet Server will have a higher performance than a CPU that uses four of these
devices.

5.6.1.1. CPU’s Local Interfaces

For a device MODBUS Ethernet Server, we can assert that the device is capable to answer a x number of requisitions per
second. Or, in other words, the Server is able to transfer n bytes per second, depending on the size of each requisition. As
smaller is the cycle time of the MODBUS Server task, higher is the impact of the number of connections in his answer rate.
However, for cycle times smaller than 20 ms this impact is not linear and the table below must be viewed for information.

The table below exemplifies the number of requisitions that a MODBUS Server inserted in a local Ethernet interface is
capable to answer, according to the cycle time configured for the MODBUS task and the number of active connections:

207 altus

gt

5. CONFIGURATION

Answered requisitions | Answered requisitions | Answered requisitions
Number of Active Connections | P second with the | per second with the | per second with the
MODBUS task cycle at | MODBUS task cycle at | MODBUS task cycle at
S5ms 10 ms 20 ms

1 Connection 185 99 50

2 Connections 367 197 100

4 Connections 760 395 200

7 Connections 1354 695 350

10 Connections 1933 976 500

Table 150: Communication Rate of a MODBUS Server at Local Interface

The communication performances mentioned in this section are just examples, using a CPU
with only one device MODBUS TCP Server, with no logic to be executed inside the appli-
cation that could delay the communication. Therefore, these performances must be taken as
the maximum rates.

For cycle times equal or greater than 20 ms, the increase of the answer rate is linear, and may be calculated using an
equation:

N=Cx(/T)

Where:

N is the medium number of answers per second;

C is the number of active connections;

T is the MODBUS task interval in seconds.

As an example a MODBUS Server, with only one active connection and a cycle time of 50 ms we get:
C=1;T=0,05s;

N=1x(1/(0,05))

N=20

That is, in this configuration the MODBUS Server answers, on average, 20 requisitions per second.

In case the obtained value is multiplied by the number of bytes in each requisition, we will obtain a transfer rate of n bytes
per second.

5.6.1.2. Remote Interfaces

The performance of a device MODBUS Server in one remote Ethernet interface is similar to the performance in the CPU’s
local interfaces.

However, due to time of the communication between the CPU and the modules, the maximum performance is limited.
For only one active connection, the number of answers is limited in the maximum of 18 answers per second. With more
active connections, the number of answers will increase linearly, exactly like the local interfaces, however being limited at the
maximum of 90 answers per second. So, for a remote Ethernet interface, we will have the following forms to calculate his
performance:

For T < 55 ms is used:

N=Cx(18.18 - (18.18 /(0.055 x 1000)))
And for T > 55 ms is used:

N=Cx (Z-(Z/(T x 1000)))

Where N is the medium number of answers per second, C is the number of active connections and T is equal to the cycle
time of the MODBUS task (in seconds).

The user must pay attention to the fact that the maximum performance of a device MODBUS Server in one remote Ethernet
interface is 90 answers of requisitions per second.

208

Q
=
G

\

5. CONFIGURATION

5.6.2. OPC DA Server

Communication performance with OPC DA Server was tested by creating POUs with 1,000 INT variables each. All
scenarios were tested with Single profile and MainTask Interval at 100 ms. The communication was enabled by the attribute
symbol’ := ’readwrite’, to make the data available to the OPC DA Server. The measurements were made while MasterTool
was disconnected from the CPU, and MainTask duration was made to last 5%, 50% and 80% of the configured Interval, as
seen in table below.

At the OPC Client’s side, a SCADA system driver was used. Configured update time was 50 ms. Performance results in
these conditions are described in table below.

Total quantity of vari-

ables in the PLC’s Variable update time at OPC DA Client

project

5% of CPU Busy 50% of CPU Busy 80% of CPU Busy

1000 600 ms 800 ms 1400 ms
2000 800 ms 900 ms 2800 ms
5000 1000 ms 2000 ms 6500 ms
10000 2000 ms 4000 ms 13700 ms
15000 3200 ms 6400 ms 20000 ms
20000 4000 ms 8100 ms 25000 ms

Table 151: Communication Rate of an OPC DA Server

5.6.3. OPC UA Server

The OPC UA Server MU214609 analyzes the performance of OPC UA communication in greater detail, including address-
ing the consumption of Ethernet communication bandwidth. This manual also discusses concepts about the operation of the
OPC UA protocol.

5.6.4. IEC60870-5-104 Server

The IEC 60870-5-104 Server driver is executed by the CPU in the same way as the other communication drivers Servers,
that is, in the background, with a priority below the user application and cyclically. The task of this The driver specifically
executes every 50 ms, and 1 driver execution cycle is enough to process and respond to requests. However, as it is a low priority
task, it is not guaranteed to be able to run at this frequency because depends on the percentage of free CPU (difference between
the MainTask interval and the time that the user application takes to be executed) and also concurrency with tasks from other
protocols configured in the CPU.

To help in the comprehension of the driver IEC 60870-5-104 Server performance are presented the result of some test done
with an IEC 60870-5-104 Client simulator, connected to a NX3030 running an [EC 60870-5-104 Server. The configured data
base was compose of 900 digital points and 100 analog points (all with quality and time stamp), and the MainTask was using
70 ms (of the 100 ms interval).

= Time to complete a general interrogation command: less than one second
= Time to transfer 900 digital events + 100 analog events: 6 seconds

5.7. System Performance

In cases where the application has only one MainTask user task responsible for the execution of a single Program type pro-
gramming unit called MainPrg (as in Single Profile), the PLC consumes a certain amount of time for the task to be processed.
At that time we call it as Execution Time.

In an application the average application Execution Time can be known using the MasterTool IEC XE in the Device item
of its Devices Tree as follows:

PLC Logic-> Application-> Task Configuration in the Monitor tab, Average Cycle Time column.

The user must pay attention to the Cycle Time so that it does not exceed 80% of the interval set in the MainTask user task.
For example, in an application where the interval is 100 ms, an appropriate Cycle Time is up to 80 ms. This is due to the fact
that the CPU needs time to perform other tasks such as communication processing, processing of the display and memory card,
and these tasks take place within the range (the remaining 20% of Cycle Time).

209 altus

5. CONFIGURATION

ATTENTION

For very high cycle times (typically higher than 300 ms), even that the value of 80% is
respected, it may occur a reduction in the display response time and of the diagnostics key.
In case the 80 percentage is not respected and the running time of the user task is closer or
exceeds the interval set for the MainTask, the screen and the diagnosis button cannot respond
once its priority in the system running is lower than the user tasks. In case an application with
errors is loaded in the CPU, it may be necessary to restart it without loading this application
as shown in the System Log section.

ATTENTION

|

The CPU’s system logs of the Nexto Series, starting from firmware version 1.4.0.33 now
reloaded in case of a CPU reset or a reboot of the Runtime System, that is, you can view the
older logs when one of these conditions occurs.

5.7.1. 1/0 Scan Time

For a project that uses digital I/O modules, being them inserted into the bus and declared in the project, the MainTask time
will increase according to the number of modules. The table below illustrates the average time that is added to the MainTask:

Declared Modules in the Bus | Added Time in the MainTask Cycle Time (us)
5 300
10 700
20 1000

Table 152: 1/O Scanning Time

In projects that use remote I/Os, for example, using the NX5001 PROFIBUS-DP Master module, the manual of the re-
spective module has to be consulted for information about performance and influences of the module in the execution of user
tasks.

5.7.2. Memory Card

Data transfers involving the memory card is performed by the CPU in the background, as this gives priority to the execution
of user application and communication processing. Thus, the transfer of files to the card may suffer an additional significant
time, depending on the Cycle Time of the user application.

The time required to read/write files on the card will be directly affected by the Cycle Time of the user application since
this application has priority in execution.

Further information about the use of the memory card see Memory Card section.

5.8. RTC Clock

The CPUs have an internal clock that can be used through the NextoStandard.lib library. This library is automatically
loaded during the creation of a new project (to perform the library insertion procedure, see Libraries section). The figure
below shows how to include the blocks in the project:

210

Q
=
G

\

5. CONFIGURATION

Configuration (Bus) rm Device 1@ Library Manager X
5 Add library 3 Delete library | “5 Properties 53 Details

Mame Mamespace

+ ‘ NextoStandard (Waa) | MextoStandard

+ LibDataTypes (Manufacturer) LibDataTypes

+ NX3030 Diagnostic Structs {(WAA) NX3030_Diagnostic_Structs
+ NX5001 Diagnostic Structs (WAA) NX5001_Diagnostic_Structs
+ NX1001 Diagnostic Structs (WAA) NX1001_Diagnostic_Structs
+ NX1005 Diagnostic Structs {WAA) MX1005_Diagnostic_Structs
+ NX2001 Diagnostic Structs {(WAA) NX2001_Diagnostic_Structs
+ NX2020 Diagnostic Structs {WAA) NX2020_Diagnostic_Structs
+ NX4000 Diagnostic Structs {Waa) MX4000_Diagnostic_Structs
+ NX5000 Diagnostic Structs (WAA) NX5000_Diagnostic_Structs
+ NX6000 Diagnostic Structs {WAA) NX6000_Diagnostic_Structs
+ NX6100 Diagnostic Structs (WAA) NX6100_Diagnostic_Structs

+ NX6010 Diagnostic Structs (Manufacturer) NX6010_Diagnostic_Structs
+ NX6020 Diagnostic Structs (Manufacturer) NX6020_Diagnostic_Structs

+ Standard (System) Standard
+ NXModbus Diagnostic Structs (WAA) N¥Modbus_Diagnostic_Struds
+-2) Multitasking E] o

=2 Real Time Clock Functions
GetDateAndTime
GetDayOfwesk i
GetTimeZone
SetDateAndTime
SetTimeZone
+-2) Data Types

m

[) Obsolete b
+ - startup Counters
+ System Calls %

Figure 122: Clock Reading and Writing Blocks

Function blocks of RTC Reading and Writing, previously available in 2.00 MasterTool IEC
XE or older become obsolete from 2.00 or newer, the following blocks are no longer used:
NextoGetDateAndTime, NextoGetDateAndTimeMs, NextoGetTimeZone, NextoSetDateAnd-
Time, NextoSetDateAndTimeMs and NextoSetTimeZone.

5.8.1. Function Blocks for RTC Reading and Writing

Among other function blocks, there are some very important used for clock reading (GetDateAndTime, GetDayOfWeek
and GetTimeZone) and for date and time new data configuring (SetDateAndTime and SetTimeZone). These functions always
use the local time, that is, take into account the value defined by the Time Zone.

The proceedings to configure these two blocks are described below.

The obsolete function blocks for reading and writing the RTC (NextoGetDateAndTime,
NextoGetDateAndTimeMs, NextoSetDateAndTime and NextoSetDateAndTimeMs) cannot be
used in the redundant data area in redundant projects . They must be used in non-redundant
POUs, such as the NonSkippedPrg POU. More details on how the POU NonSkippedPrg
works can be found in NonSkippedPrg Program.

5.8.1.1. Function Blocks for RTC Reading

The clock reading can be made through the following functions:

211

\

Q
=
G

5. CONFIGURATION

5.8.1.1.1. GetDateAndTime

GetDateAndTime
—DATEANDTIME GetDateAndTimef—

Figure 123: Date and Hour Reading

Input Parameters Type Description

This variable returns the value of
date and hour of RTC in the format
shown at Table 162.

EXTENDED_DATE

DATEANDTIME _AND_TIME

Table 153: Input Parameters of GetDateAndTime

Output Parameters Type Description

Returns the function error state, see

GETDATEANDTIME | RTC_STATUS Table 164.

Table 154: Output Parameters of GetDateAndTime

Utilization example in ST language:

PROGRAM UserPrg

VAR

Result : RTC_STATUS;

DATEANDTIME : EXTENDED_DATE_AND_TIME;
xEnable : BOOL;

END_VAR

IF xEnable = TRUE THEN

Result := GetDateAndTime (DATEANDTIME) ;
xEnable := FALSE;
END_TF

5.8.1.1.2. GetTimeZone

The following function reads the Time Zone configuration, this function is directly related with time in Time Zone at SNTP
synchronism service:

GetTimeZone
—TIMEZONE GetTimeZone f—

Figure 124: Configuration Reading of Time Zone

212

5. CONFIGURATION

Input Parameters

Type

Description

TIMEZONE

TIMEZONESETTINGS

This variable presents the reading
of Time Zone configuration.

Table 155: Input Parameters of GetTimeZone

Output Parameters Type Description
GetTimeZone RTC_STATUS Returns the function error state, see
Table 164.

Table 156: Output Parameters of GetTimeZone

Utilization example in ST language:

PROGRAM UserPrg

VAR
GetTimeZone_Status : RTC_STATUS;
TimeZone : TIMEZONESETTINGS;

xEnable : BOOL;
END_VAR

IF xEnable = TRUE THEN

GetTimeZone_Status := GetTimeZone (TimeZone) ;
xEnable := FALSE;
END_IF

5.8.1.1.3. GetDayOfWeek

GetDayOfWeek function is used to read the day of the week.

GetDayOfweek

GetDay OfWeekt—

Figure 125: Day of Week Reading

Output Parameters

Type

Description

GetDayOfWeek

DAYS_OF_WEEK

Returns the day of the week. See
Section 163.

Table 157: Output Parameters of GetDayOfWeek

When called, the function will read the day of the week and fill the structure DAYS_OF_WEEK.

Utilization example in ST language:

213

5. CONFIGURATION

PROGRAM UserPrg

VAR

DayOfWeek : DAYS_OF_WEEK;
END_VAR

DayOfWeek := GetDayOfWeek () ;

5.8.1.2. RTC Writing Functions

The clock settings are made through function and function blocks as follows:

5.8.1.2.1. SetDateAndTime

SetDateAndTime function is used to write the settings on the clock. Typically the precision is on the order of hundreds of
milliseconds.

SetDateAndTime
—REQUEST DOMER—
—DATEANDTIME EXEC —
ERRORF—
STATUSF—

Figure 126: Set Date And Time

Input parameters Type Description

This variable, when receives a ris-

REQUEST BOOL ing edge, enables the clock writing.

Receives the values of date and
hour with milliseconds. See section
162.

EXTENDED_DATE

DATEANDTIME _AND._TIME

Table 158: Input Parameters of SetDateAndTime

Output parameters Type Description

This variable, when true, indicates
DONE BOOL that the action was successfully
completed.

This variable, when true, indicates
EXEC BOOL that the function is processing the
values.

This variable, when true, indicates

ERROR BOOL an error during the Writing.

Returns the error occurred during

STATUS RTC_CMD_STATUS the configuration. See Table 164.

Table 159: Output Parameters of SetDateAndTime

5. CONFIGURATION

When a rising edge occurs at the REQUEST input, the function block will write the new DATEANDTIME values on the
clock. If the writing is successfully done, the DONE output will be equal to TRUE. Otherwise, the ERROR output will be equal
to TRUE and the error will appear in the STATUS variable.

Utilization example in ST language:

PROGRAM UserPrg

VAR

SetDateAndTime : SetDateAndTime;

xRequest : BOOL;

DateAndTime : EXTENDED_DATE_AND_TIME;

xDone : BOOL;

xExec : BOOL;

xError : BOOL;

xStatus : RTC_STATUS;

END_VAR

IF xRequest THEN
SetDateAndTime .REQUEST :=TRUE;
SetDateAndTime .DATEANDTIME :=DateAndTime;
xRequest := FALSE;

END_TF

SetDateAndTime () ;

SetDateAndTime .REQUEST :=FALSE;

IF SetDateAndTime.DONE THEN
xExec:=SetDateAndTime.EXEC;
xError:=SetDateAndTime.ERROR;
xStatus:=SetDateAndTime.STATUS;

END_IF

If you try to write time values outside the range of the RTC, the values are converted to
valid values, provided they do not exceed the valid range of 01/01/2000 to 12/31/2035. For
example, if the user attempts to write the value 2000 ms, it will be converted to 2 seconds,
write the value 100 seconds, it will be converted to 1 min and 40 seconds. If the type value
of 30 hours, it is converted to 1 day and 6 hours, and so on.

5.8.1.2.2. SetTimeZone

The following function block makes the writing of the time zone settings:

SetTimeZone
— TIMEZONE SetTimeZonef—

Figure 127: Writing of the Time zone Settings

215

\

Q
=
G

5. CONFIGURATION

Input parameters Type Description
Structure with time zone to be con-
TIMEZONE TIMEZONESETTINGS figured. See Table 165.

Table 160: SetTimeZone Input Parameters

Output parameters Type Description
. Returns the error occurred during
SetTimeZone RTC_STATUS the reading/setting. See Table 164.

Table 161: SetTimeZone Output Parameters

When called, the function will configure the TIMEZONE with the new system time zone configuration. The configuration
results is returned by the function.

Utilization example in ST language:

PROGRAM UserPrg

VAR

Status : RTC_STATUS;
TimeZone : TIMEZONESETTINGS;
xWrite : BOOL;

END_VAR

//FB SetTimeZone

IF (xWrite = TRUE) THEN

Status := SetTimeZone (TimeZone) ;
IF Status = RTC_STATUS.NO_ERROR THEN
xWrite := FALSE;
END_TIF
END_IF

To perform the clock should be used time and date values within the following valid range:
00:00:00 hours of 01/01/2000 to 12/31/2035 23:59:59 hours, otherwise , is reported an error
through the STATUS output parameter. For details of the STATUS output parameter, see the
section RTC_STATUS.

5.8.2. RTC Data Structures

The reading and setting function blocks of the Nexto Series CPUs RTC use the following data structures in its configuration:

216

Q
=
G

\

5. CONFIGURATION

5.8.2.1.

EXTENDED_DATE_AND_TIME

This structure is used to store the RTC date when used the function blocks for date reading/setting within milliseconds of
accuracy. It is described in the table below:

Structure Type Variable Description
BYTE byDayOfMonth | Stores the day of the set date.
BYTE ByMonth Stores the month of the set date.
WORD wYear Stores the year of the set date.
EXTENDED _DATE | BYTE byHours Stores the hour of the set date.
AND_TIME BYTE byMinutes Stores the minutes of the set date.
BYTE bySeconds Stores the seconds of the set date.
WORD wMilliseconds 2;);68 the milliseconds of the set

5.8.2.2. DAYS_OF_WEEK

This structure is used to store the day of week:

Table 162: EXTENDED_DATE_AND_TIME

Enumerable

Value

Description

DAYS_OF_WEEK

INVALID_DAY

SUNDAY

MONDAY

TUESDAY

WEDNESDAY

THURSDAY

FRIDAY

NN | AW =] O

SATURDAY

5.8.2.3. RTC_STATUS

Table 163: DAYS_OF_WEEK Structure

This enumerator is used to return the type of error in the RTC setting or reading and it is described in the table below:

Enumerator Value Description
NO_ERROR (0) There is no error.
UNKNOWN_COMMAND (1) Unknown command.
DEVICE_BUSY (2) Device is busy.
DEVICE_ERROR (3) Device with error.
ERROR_READING_OSF (4) Error in the reading of the valid date
and hour flag.

ERROR_READING_RTC (5) Error in the date and hour reading.

RTC_STATUS ERROR_WRITING_RTC (6) Error in the date and hour writing.

ERROR_UPDATING_SYSTEM
_TIME (7)

Error in the update of the system’s
date and hour.

INTERNAL_ERROR (8)

Internal error.

INVALID_TIME (9)

Invalid date and hour.

INPUT_OUT_OF_RANGE
(10)

Out of the limit of valid date and

hour for the system.

217

5. CONFIGURATION

Enumerator Value

Description

SNTP_NOT_ENABLE (11)

Error generated when the SNTP
service is not enabled and it is done
an attempt for modifying the time
zone.

5.8.2.4. TIMEZONESETTINGS

Table 164: RTC_STATUS

This structure is used to store the time zone value in the reading/setting requests of the RTC’s function blocks and it is
described in table below:

Structure Type Variable Description
TIMEZONESETTINGS INT iHour Set time zone hour.
INT iMinutes Set time zone minute.

Note:

Table 165: TIMEZONESETTINGS

Function Blocks of Writing and Reading of Date and Hour: different libraries of NextoStandard, which have function
blocks or functions that may perform access of reading and writing of date and hour in the system, are not indicated. The
NextoStandard library has the appropriate interfaces for writing and reading the system’s date and hour accordingly and for
informing the correct diagnostics.

5.9. User Files Memory

Nexto Series CPUs have a memory area destined to the general data storage, in other words, the user can store several
project files of any format in the CPU memory. This memory area varies according to the CPU model used (check Memory

section).

In order to use this area, the user must access a project in the MasterTool IEC XE software and click on the Devices Tree,
placed at the program left. Double click on the Device item and, after selecting the CPU in the Communication Settings tab
which will be open, select the Files tab and click on Refresh, both in the computer files column (left) and in the CPU files
column (right) as shown on figure below.

Configuration (Bus)

Communication Settings

'
I Files
|

Log

Users and Groups

Acceszs Rights

Information

-

[f] Device x
Host | Location ; FADAT\DOCUMENT\Predutes. - |[3 EI Runtime | Location | [j / | o
MName Size Modified Name Size Modified
t. [REﬂEEh L cert
l_] Application.app 2.78MB (2,91... 8/28/2020 10:... 4 MemoryCard
l_] Application.cre 28 bytes 8/28(2020 10:... [InternalMemary
E‘J Mapeamento MY 3030.xsx 15.54 KB (15,... 9/5/2018 3:32... |__] Application. core 300,95 KB (30... 5/20/2020 5:...
l_] Mexto.mcf 624 bytes 9/3/2020 12:1... l_] ReceitaMaxima.Machined1.t... 81bytes 9/1/2020 3:5...
|] NTP145_J1GAD3_CPU_NX30... 69.88KB (71,... 9/3/2020 Z:0B... |1 receitaMinima.Machine0 1. tc... 82 bytes 3/1/2020 3:5...
U NTP145_JIGAD3_CPU_MX30... 713bytes 9/3/2020 2:08...
=] NTP145_JIGAD3_CPU_NX30... 1.67KB(1,70.. 9/1/20203:42..
|] NTP145_11GAD3_CPU_NX30... 20.52MB (21,... 5/1/2020 3:44...
|] NTP145_11GAD3_CPU_NX30... 32 bytes 9f1/2020 3:44...
|] NTP145_JIGADZ_CPU_NX30... 20.52MB (21,... 9/1/2020 3:44.., .
|£] NTP145_JIGAO3_CPU_NX30... 10.21KB(10,... 9/1/20203:42...
|] NTP145_J1GAD3_CPU_NX30... B01.52KE (82... 9/3/2020 12:1...
|] NTP145_J1GAD3_CPU_NX30... 1.52KB(1,55... B8/28/2020 11:.., <<

Figure 128: User Files Access

After updating the CPU column of files, the root directory of files stored in the CPU will be shown. Then it will be possible
to select the folder where the files will be transferred to. The “InternalMemory” folder is a default folder to be used to store

218

altus

——

5. CONFIGURATION

files in the CPU’s internal memory, since it is not possible to transfer files to the root directory. If necessary, the user can create
other folders in the root directory or subfolders inside the “InternalMemory” folder.

The “MemoryCard” folder is the directory where the memory card is mounted, if it is inserted into the CPU. Files which
are transferred to the “MemoryCard” are being transferred directly into the memory card. As new features are being added to
the product, some folders may appear and which should be ignored by the user.

In the case where the memory card is inserted after the CPU startup, an username and pass-
word will be requested to perform the MasterTool IEC XE access and/or file transfers to the
memory card or vice versa. The standard user with privileges to access the CPU is “Owner”
and the default password for that user is “Owner”.

In order to perform a file transfer from the microcomputer to the CPU just select the desired file in the left column and

press the “»” key located in the center of the screen, as shown in figure below. The download time will vary depending on file
size and cycle time (execution) of the current application of the CPU and may take several minutes.

The user does not need to be in Run Mode or connected to the CPU to perform the transfers, since it has the ability to
connect automatically when the user performs the transfer.

Configuration (Bus) m Device X

-
Communication Settings Host Location , FADAT\DOCUMENT\Produtos, - | (3 Exd Runtime | Location | _j MemoryCard ~ | @
Files Name Size Modified MName Size Maodified

t. B =
Log Application. 2,78 MB (2,91, B/28/2020 10:... 3 NextoMemCard

28 bytes 8/28/2020 10:... [d Backup

Users and Groups apeamen s 15.5!{8(15,... 97972015 3:34... [Userlog

|] Mexto.mef 524 bytes 9/3/2020 12:1... |1 Application.cre 28 bytes 9/3/2020 3:2...
Access Rights |] NTP145_31GAD3_CPU_NX30... 69.88KB (71,.. 8/3/2020 2:08...

|] vP14s_1Ga03_CPU_MX30... 718bytes 9/3(2020 2:08...

Information | NTP145_JIGAO3_CPU_NX30... 1.57KB(1,70... 5/1/2020 3:42...

|] NTP145_31GAD3_CPU_NX30... 20.52MB (21,... 9/1/2020 3:44...
| 7 vP14s_nGaos_cru_man... 32bytes 9/1/2020 3:44...
|] NTP145_31GAD3_CPU_NX30... 20.52MB {21,... 8/1/2020 3:44...
=] NTP145_JIGAD3_CPU_NX30... 10.21KB(10,... 9/1/2020 3:42...
|] NTP145_11GAD3_CPU_NX30... 801.92KB (82... 8/3/2020 12:1...
|] NTP145_31GAD3_CPU_NX30... 1.52KB (1,55... B8/28/2020 11:... <<

i

Figure 129: Files Transference

The files contained in the folder of a project created by MasterTool IEC XE have special
names reserved by the system in this way cannot be transferred through the Files tab. If the
user wishes to transfer a project to the user memory, you must compact the folder and then
download the compressed file (*.zip for example).

In case it is necessary to transfer documents from the CPU to the PC in which the MasterTool IEC XE software is installed,
the user must follow a very similar procedure to the previously described, as the file must be selected from the right column
and the button “«” pressed, placed on the center of the screen.

Furthermore, the user has some operation options in the storing files area, which are the following:

= New directory —: allows the creation of a new folder in the user memory area.

= Delete item : allows the files excluding in the folders in the user memory area.

= Refresh : allows the file updating, on the MasterTool IEC XE screen, of the files in the user memory area and in the
computer.

219

\

Q
=
G

5. CONFIGURATION

Configuration (Bus) 'm Device X -
Communication Settings Host | Location , FADAT\DOCUMENT\Produtos', vI Ea f.)l Runtime | Location | [MemoryCard S I.__j 3+
]
Files Name Size Modified Mame Size Modified
t . t .
lag |1 application. app 2.73MB (2,91... 8/28/2020 10:... A MextoMemCard
l_] Application.crc 28 bytes 8/28/2020 10:... [Backup
Users and Groups @_j Mapeamento MX3030.xsx 15.54 KB (15,... 9/5/2019 3:32... [UserLog
|1 Mexto.mef 524 bytes 9/3/2020 12:1...
Access Rights |] NTP145_31GAD3_CPU_NX30... 69.88 KB (71,... 9/3/2020 Z:08...
|] nTP145_11GAD3_CPU_NX3D... 718 bytes 9/3/2020 2:08...
TiE eI %] NTP145_1IGA03_CPU_NX30... L&7KB (1,70... 9/1/2020 3:42...
|] vTP145_31GA03 CPU_NX30... 20.52MB (21,... 9/1/2020 3.

|] nTP145_31GA03_CPU_NX30... 32bytes 9/1/2020 3:44...
|] NTP145_31GA03_CPU_NX30... 20.52MB (21,... 9/1/2020 3:44...
|| NTP145_JIGAO3_CPU_NX30... 10.21KB(10,... 9/1/2020 3:42...
|] NTP145_31GAD3_CPU_NX30... 801.92KB (82... 9/3/2020 12:1...
|] nTP145_1GA0_CPU_NX30... 1.52KB (1,55... 8/28/2020 11:... <<

B

Figure 130: Utilization Options

For a CPU in Stop Mode or with no application, the transfer rate to the internal memory is
approximately 150 Kbytes/s.

5.10. Memory Card

Among other memories, Nexto Series CPUs allow the user the utilization of a memory card. It is defined according the
features described in Memory Card Interface section which stores, among other files, the project and application in the CPU
internal memory.

When the card is inserted in the CPU and it presents a file type different from FAT32, it automatically identifies those
files and questions the user if he wants to format the files. In negative case the user cannot use the card, as it is not mounted.
A message informing the format is not recognized is presented and the card presence is not displayed either. If the user
decides to format the files, the CPU takes a few minutes to execute the operation, depending on the cycle time (execution) of
the application which is running in the CPU. Once the memory card is mounted, the CPU will read its general information,
leaving access to the memory card slower in the first few minutes. This procedure is done only when the card is inserted or in
case of the CPU reset.

It is recommended to format the memory card directly in the Nexto CPU in order to avoid
possible use problems, mounting time increase or even the incorrect functioning.

It is not recommended to remove the memory card or de-energize the CPU during the for-
matting or during the files transfer as it can cause the loss of data as well as irreversible
damages.

5.10.1. Project Preparation

To use the functionality, during the project configuration, in the MasterTool IEC XE software, the user must enable the
option to copy the CPU project to the memory card and/or memory card to the CPU and to configure passwords. These
passwords will be requested by the CPU when executing the respective transfer. For information about the table, see section
Project Parameters.

If the CPU has no application, the “Memory Card” Menu will be available to allow the
transfer of the project from memory card to the CPU without requiring any kind of previous
preparation of the CPU.

To use the feature you must perform the following steps.

Navigate to the Online menu and execute the command Create Boot Application, remembering that you cannot be logged
into the CPU to perform this procedure. After you run this command, two files are created in the folder where the project is
saved. One with the extension “app” and one with the extension “crc".

220 altus

——

5. CONFIGURATION

After generating the files in the previous item, you must navigate to the CPU General Parameters settings and click the
Memory Card... button. A new screen will open as shown in figure below. In this screen you must enable the desired transfer
operation(s) and, if necessary, set the password(s) with numeric characters only. The use of password is not required.

To complete the setup operation you must click the Find File... button and then locate the file with “.crc” extension
generated in the previous step.

L™ Memory Card Configuration
Memory Card
Copy Project from CPLU to Memary Card
Dizabled W

Password to Copy Project from CPLU to Memony Card

Copy Project from Memory Card ta CPU
Dizabled W
Password to Copy Project from Memary Card to CPU

Carc

Create Boot Nexto.mcf
Lse this option after create boot application.

Select the Application.cro: Find File...

Figure 131: Memory Card Settings

Following these steps, MasterTool IEC XE will send all files needed to perform the send and receive operations of projects
via memory card. If the card is mounted, the password will be written to it. Otherwise, the password set in MasterTool will be
requested if the user tries to transfer the CPU project to the card.

5.10.2. Project Transfer

To transfer the project from CPU to the memory card or vice versa, the user, in addition to enabling in MasterTool IEC XE
software to use the functionality, will have to access the menu Memory Card in the CPU, using the diagnostics key, and select
the desired transfer option.

The transfer of the project to the memory card should only be done using the CPU diagnostics
key.

Afterwards, you will be prompted for the password if the user has set during application setup. Then with a short press on
the diagnostics key the digits are incremented and with a long press are confirmed. In the confirmed sixth digit, the CPU will
consist of the password and start the process.

After transferring the memory card to the CPU, if there is a RUN application it will be kept in STOP for safety reasons. To
put the CPU in RUN, it must be rebooted.

When the passwords of both the application that is in the CPU and the application that is on the memory card are the same,
it is not required to enter the passwords in the CPU menu to perform the application transfers. For more information on using
the diagnostics key, see section One Touch Diag.

To remove the memory card, simply press and hold the MS key and wait until the memory card icon disappears from the
graphic display status screen.

221

\

Q
=
G

5. CONFIGURATION

ATTENTION

If the memory card is removed without have been unmounted through CPU’s menu, during
a file transference, this process can cause the loss of card data as well as corrupt the files in
it. This process may cause the need of another card formatting when it’ll be inserted on the
CPU again.

ATTENTION

If there is any file at memory card root named “NextoMemCard” or “Backup”, it will be
deleted to create the system folders with the same name, used by the CPU to store the project
application and the project archive. Folders with these names will not be overwritten.

5.10.3. MasterTool Access

The memory card access is connected to the same user memory screen in the MasterTool IEC XE software, being it
mounted in the folder called MemoryCard. NextoMemCard and Backup folders are created into the memory card every time
the latter is inserted into the CPU. In case these folders already exist, the system will recognize them and will not overwrite
the folders.

In the NextoMemCard on the memory card, you will find the application files, in this window you still have the option to
save your project in a preferred directory (if you have sent the source code). In MasterTool in the option "File / Project Archive
/ Extract Archive..." you can open in MasterTool the saved application, which is located in the directory previously chosen.

The Backup folder is not used by the user.

Configuration (Bus) V] pevice x -
Communication Settings Host | Lacation - |m@m X 4 Runtime | Location | [MemoryCard/MextoMemCard - @ X o
Files MName Size Modified MName Size Modified

= C\ L
s 2 DA\ | Nexto.mef 384 bytes 9/3{2020 3:50 PM

= l_] Application.app 2,55MB (2.671.036 bytes) 9/3/2020 3:51PM
Users and Groups |7 Application.cre 26 bytes 9/3/2020 3:52FM

|] nTP145_11GA08_CPU_NX3003_0001projectarchive 22,02 MB (23.084.417b... 9/3{2020 4:05 PM
Access Rights

Information

=

Figure 132: Directory with Memory Card Inserted with Project

ATTENTION

The files transference time depends on the interval time difference minus the average execu-
tion time of the task (s) in execution (available time until the next task cycle), it means, the
bigger this difference for each task in an application, the faster will be the transference of a
data from the memory card to a CPU/MasterTool IEC XE or vice-versa.

Transferring files to the memory card will be slower than the transfer to the internal memory
of the CPU. For a CPU in Stop Mode or with no application, the transfer rate is close to 100
Kbytes/s.

5.11. CPU’s Informative and Configuration Menu

The access to the Informative Menu, the Nexto CPU Configuration and the detailed diagnostics, are available through levels
and to access the menu information, change level and modify any configuration, a long touch is required on the diagnostic
button and to navigate through the items on the same level, a short touch on the diagnostic button is required. See One Touch
Diag section to verify the functioning and the difference between the diagnostics button touch types.

The table below shows the menu levels and each screen type available in the CPUs, if they are informative, configurable or
to return a level.

222

\

Q
=
G

5. CONFIGURATION

Level 1 Level 2 Level 3 Type

TEMPERATURE - Informative

HARDWARE CONTRAST CONTRAST LEVEL Conﬁgura%ble
DATE AND TIME - Informative

BACK - Return level

ENGLISH >ENGLISH Configurable

LANGUAGES PORTUGUES >PORTUGUES Configurable
ESPANOL >ESPANOL Configurable

BACK - Return level

NET 1 IP ADDR. Informative

NET 1 MASK Informative

NETWORK NET 2 IP ADDR. - Informative
NET 2 MASK Informative

BACK Return level

PLCID Informative

REDUNDANCY REMOTE STATE - Informat%ve
PROJ.SYNC. Informative

BACK Return level

FIRMWARE Informative

SOFTWARE BOOTLOADER - Informat%ve
AUX. PROC. Informative

BACK Return level
MEMCARD > CPU CPU PASSWORD Configurable
CARTAO DE MEM. CPU > MEMCARD MC PASSWORD Configurable
FORMAT CONFIRM ? Configurable

BACK - Return level

BACK - - Return level

Table 166: CPU Menu Levels

Notes:
Memory Card: The memory card is only available in the menu, if it is connected in the Nexto CPU.
Redundancy: The “REDUNDANCY”’ menu will only be available in case the NX3030 CPU is identified as Redundant.

Password: The memory card data access password is only necessary in case it is configured in the MasterTool IEC XE
software. You cannot edit the password via menu.

As shown on Table 166, between the available options to visualize and modify are the main data necessary to user, as:

= Information about the hardware resources:
* TEMPERATURE - CPU Internal temperature (Ex.: 36 C 97 F)
¢ CONTRAST - Contrast setting of the CPU frontal display
* DATE AND TIME - Date and time set in the CPU (Ex.: 2001.01.31 00:00)
= Changing the menu language on the CPU:
* PORTUGUES - Changes the language to Portuguese
* ENGLISH - Changes the language to English
* ESPANOL - Changes the language to Spanish
= Visualization of information about the network set in the device:
e NET 1 IP ADDR. — Address (Ex.: 192.168.0.1)
e NET 1 MASK — Subnet mask (Ex.: 255.255.255.0)
e NET 2 IP ADDR — Address (Ex.: 192.168.0.2)

5. CONFIGURATION

* NET 2 MASK - Subnet mask (Ex.: 255.255.255.0)
= Access to the PLC redundancy information:

e PLC ID - Informs the PLC identification in the redundancy. Possible information:
o PLCA
o PLCB

* REMOTE STATE - Informs the state of the remote redundant PLC. Possible states:

ACTIVE

STANDBY

INACTIVE

NOT CONFIG.

STARTING

UNAVAILABLE

* PROJ. SYNC. — Informs if the synchronization of the projects is enabled

CONNECTED

NOT CONNEC.

DISABLED

START SYNC.

SYNCHRONIZED

= Information about the software versions:
¢ FIRMWARE - CPU software version (Ex.: 1.0.0.0)
« BOOTLOADER - CPU bootloader version (Ex.: 1.0.0.0)
* AUX. PROC. - CPU auxiliary processor version (Ex.: 1.0.0.0)

= Access to the Memory Card data:
* MEMCARD > CPU - Transference of the memory card project to the CPU
* CPU > MEMCARD - Transference of the CPU project to the memory card
¢ FORMAT - Formats the card to the FAT32 files system

The figure below describes an example of how to operate the Nexto CPUs menu through the contrast adjust menu procedure
from the Statusscreen. Besides to make the configuration easy, it is possible to identify all screen levels and the touch type to
navigate through them, and to modify other parameters as Language and the Memory Card, using the same access logic. The
short touch shows the contrast is being incremented (clearer) and in the next touch after its maximum value, it returns to the
minimum value (less clear). The long touch shows the confirmation of the desired contrast and its return to the previous level.

[}

O O O O O

O O O ©

[¢]

Short LEVEL1
Press

| STATUS SCREEN |—}| NETWORK |

T Short LEVEL 2
Press Long
Fress
| HARDWARE | N | TEMPERATURE |
LEVEL
Short | 3
Press Long
Press
CONTRAST —» CONTRAST EDIT
EE®@8® O00C

Short Shaort
Fress Prass A
DATE AND TIME CONTRAST EDIT
@ea®®E0000

Short
Long Press ong

Press .
| SOFTWARE | ¢ | RETLRN I Fress
Short
Press
LANGUAGES
Short l
Prass

| BACK

Long
Press

Short
Press

3
' o

F

Figure 133: Contrast Adjust

224

Q
=
G

\

5. CONFIGURATION

Besides the possibility of the Nexto CPUs menu to be closed through a long touch on the screen diagnostic button BACK
from level 1, there are also other output conditions that are described below:

= Short touch, at any moment, in the other modules existent on the bus, make the CPU disconnect from the menu and
show the desired module diagnostic.

= Idle time, at any level, superior to 5 s.

5.12. Function Blocks and Functions
5.12.1. Special Function Blocks for Serial Interfaces

The special function blocks for serial interfaces make possible the local access (COM 1 AND COM 2) and also access to
remote serial ports (expansion modules). Therefore, the user can create his own protocols and handle the serial ports as he
wishes, following the IEC 61131-3 languages available in the MasterTool IEC XE software. The blocks are available inside the
NextoSerial library which must be added to the project so it’s possible to use them (to execute the library insertion procedure,
see MasterTool IEC XE Programming Manual — MP3996009, section Library).

The special function blocks for serial interfaces can take several cycles (consecutive calls) to complete the task execution.
Sometimes a block can be completed in a single cycle, but in the general case, needs several cycles. The task execution
associated to a block can have many steps which some depend on external events, that can be significantly delayed. The
function block cannot implement routines to occupy the time while waits for these events, because it would make the CPU
busy. The solution could be the creation of blocking function blocks, but this is not advisable because it would increase the
user application complexity, as normally, the multitask programming is not available. Therefore, when an external event is
waited, the serial function blocks are finished and the control is returned to the main program. The task treatment continues in
the next cycle, in other words, on the next time the block is called.

Before describing the special function blocks for serial interfaces, it is important to know the Data types, it means, the data
type used by the blocks.

Data type Options Description

BAUD200 Lists all baud rate possibilities (bits
per second)
BAUD300
BAUDG600
BAUD1200
BAUD1800
SERIAL_BAUDRATE BAUD2400
BAUD4800
BAUDY9600
BAUD19200
BAUD38400
BAUDS57600
BAUDI115200
DATABITS_5 Lists all data bits possibilities.
SERIAL_DATABITS DATABITS_6
DATABITS_7
DATABITS_8

Defines all modem signal possibilities for the configurations:
Controls the Nexto CPU RS-232C
port. The transmitter is enabled
to start the transmission and dis-
RS232_RTS abled as soon as possible after the
transmission is finished. For exam-
ple, can be used to control a RS-
232/RS-485 external converter.
Controls the RS-232C port of the
SERIAL_HANDSHAKE RS232_RTS_OFF Nexto CPU. The RTS signal is al-
ways off.

5. CONFIGURATION

Data type

Options

Description

RS232_RTS_ON

Controls the RS-232C port of the
Nexto CPU. The RTS signal is al-
ways on.

RS232_RTS_CTS

Controls the RS-232C port of the
Nexto CPU. In case the CTS is dis-
abled, the RTS is enabled. Then
waits for the CTS to be enabled
to get the transmission and RTS
restarts as soon as possible, at the
end of transmission. Ex: Control-
ling radio modems with the same
modem signal.

RS232_MANUAL

Controls the RS-232C port of the
Nexto CPU. The user is responsi-
ble to control all the signals (RTS,
DTR, CTS, DSR, DCD).

SERIAL_MODE

NORMAL_MODE

Serial Communication Normal Op-
eration mode.

EXTENDED_MODE

Serial Communication Extended
Operation mode in which are pro-
vided information about the re-
ceived data frame.

SERIAL_PARAMETERS

Defines all configuration p

arameters of the serial port:

BAUDRATE

Defined in SERIAL_BAUDRATE.

DATABITS Defined in SERIAL_DATABITS.
STOPBITS Defined in SERIAL_STOPBITS.
PARITY Defined in SERIAL_PARITY.
HANDSHAKE Defined in SE-

RIAL_HANDSHAKE.

UART_RX_THRESHOLD

Byte quantity which must be re-
ceived to generate a new UART in-
terruption. Lower values make the
TIMESTAMP more precise when
the EXTENDED MODE is used
and minimizes the overrun errors.
However, values too low may cause
too many interruptions and delay
the CPU.

MODE

Defined in SERIAL_MODE.

ENABLE_RX_ON_TX

When true, all the received byte
during the transmission will be dis-
charged instead going to the RX
line. Used to disable the full-duplex
operation in the RS-422 interface.

ENABLE_DCD_EVENT

When true, generates an external
event when the DCD is modified.

ENABLE_CTS_EVENT

When true, generates an external
event when the CTS is modified.

SERIAL_PARITY

PARITY_NONE

PARITY_ODD

PARITY_EVEN

PARITY_MARK

List all parity possibilities.

226

5. CONFIGURATION

Data type

Options

Description

PARITY_SPACE

SERIAL_PORT

List all available serial ports (COM
10, COM 11, COM 12, COM 13,

SERIAL_RX_CHAR_ EX-
TENDED

COM 1 COM 14, COM 15, COM 16, COM
17, COM 18 and COM 19 — expan-
sion modules).

COM 2

Defines a character in the RX queue in extended mode.

RX_CHAR Data byte.

RX_ERROR Error code.

RX_TIMESTAMP

Silence due to the previous charac-
ter or due to another event which
has happen before this character
(serial port configuration, transmis-
sion ending).

SERIAL_RX_QUEUE_
STATUS

It has some fields which deliver information regarding RX queue
status/error, used when the normal format is utilized (no error
and timestamp information):

RX_FRAMING_ERRORS

Frame errors counter: character in-
correct formation — no stop bit, in-
correct baud rate, among other —
since the serial port configuration.
Returns to zero when it reaches the
maximum value (65535).

RX_PARITY_ERRORS

Parity errors counter, since the se-
rial port configuration. Returns to
zero when it reaches the maximum
value (65535).

RX_BREAK_ERRORS

Interruption errors counter, since
the serial port configuration, in
other words, active line higher than
the character time. Returns to zero
when it reaches the maximum value
(65535).

RX_FIFO_OVERRUN_
ERRORS

FIFO RX overrun errors counter,
since the serial port configuration,
in other words, error in the FIFO
RX configured threshold. Returns
to zero when it reaches the maxi-
mum value (65535).

RX_QUEUE_OVERRUN_
ERRORS

RX queue overrun errors counter, in
other words, the maximum charac-
ters number (1024) was overflowed
and the data are being overwritten.
Returns to zero when it reaches the
maximum value (65535).

RX_ANY_ERRORS

Sum the last 5 error counters
(frame, parity, interruption, RX
FIFO overrun, RX queue overrun).

RX_REMAINING

Number of characters in the RX
queue.

227

5. CONFIGURATION

Data type

Options

Description

SERIAL_STATUS

List of critic error codes that can be returned by the serial func-
tion block. Each block returns specific errors, which will be de-

scribed below:

NO_ERROR

No errors.

ILLEGAL_*

Return the parameters with invalid
values or out of range:

- SERIAL_PORT

- SERIAL_MODE

- BAUDRATE

- DATA_BITS

- PARITY

- STOP_BITS

- HANDSHAKE

- UART_RX_THRESHOLD
- TIMEOUT

- TX_BUFF_LENGTH

- HANDSHAKE_METHOD
- RX_BUFF_LENGTH

PORT_BUSY

Indicates the serial port is being
used by another instance

HW_ERROR_UART

Hardware error detected in the
UART.

HW_ERROR_REMOTE

Hardware error at communicating
with the remote serial port.

CTS_TIMEOUT_ON

Time-out while waiting for the CTS
enabling, in the RS-232 RTS/CTS
handshake, in the SERIAL_TX
block.

CTS_TIMEOUT_OFF

Time-out while waiting for the CTS
disabling, in the RS-232 RTS/CTS
handshake, in the SERIAL_TX
block.

TX_TIMEOUT_ERROR

Time-out while waiting for the
transmission ending in the SE-
RIAL_TX.

RX_TIMEOUT_ERROR

Time-out while waiting for all char-
acters in the SERIAL_RX block
or the SERIAL_RX_EXTENDED
block.

FB_SET_CTRL_
NOT_ALLOWED

The SET_CTRL block can’t be
used in case the handshake is dif-
ferent from RS232_MANUAL.

FB_GET_CTRL_
NOT_ALLOWED

The GET_CTRL block can’t be
used in case the handshake is dif-
ferent from RS232_MANUAL.

FB_SERIAL_RX_
NOT_ALLOWED

The SERIAL_RX isn’t available for
the RX queue, extended mode.

FB_SERIAL_RX_ EX-
TENDED_NOT_ALLOWED

The SERIAL_RX_EXTENDED
isn’t available for the RX queue,
normal mode.

DCD_INTERRUPT_
NOT_ALLOWED

The interruption by the DCD signal
can’t be enabled in case the serial
port doesn’t have the respective pin.

228

5. CONFIGURATION

Data type

Options

Description

CTS_INTERRUPT _
NOT_ALLOWED

The interruption by the CTS sig-
nal can’t be enabled in case
the handshake is different from
RS232_MANUAL or in case the
serial port doesn’t have the respec-
tive pin.

DSR_INTERRUPT_
NOT_ALLOWED

The interruption by the DSR signal
can’t be enabled in case the serial
port doesn’t have the respective pin.
(Nexto CPUs don’t have this signal
in local ports)

NOT_CONFIGURED

The function block can’t be used
before the serial port configuration.

INTERNAL_ERROR

Indicates that an internal problem
has ocurred in the serial port.

SERIAL_STOPBITS

STOPBITS_1

List all Stop Bits possibilities.

STOPBITS_2

STOPBITS_1_5

5.12.1.1. SERIAL_CFG

Table 167: Serial Function Blocks Data types

This function block is used to configure and initialize the desired serial port. After the block is called, every RX and TX
queue associated to the serial ports and the RX and TX FIFO are restarted.

SERIAL_CFG
—REGQLEST [ME —
—FORT EREC —
—PARAMETERS ERROR —
STATUS —
Figure 134: Serial Configuration Block
Input parameters Type Description
REQUEST BOOL ThlS variable, when true, enables the func-
tion block use.
Select the serial port, as described in the
PORT SERIAL_PORT SERIAL_PORT data type.
This structure defines the serial port con-
PARAMETERS SERIAL_PARAMETERS| figuration parameters, as described in the
SERIAL_PARAMETERS data type.

Table 168: SERIAL_CFG

Input Parameters

229

5. CONFIGURATION

Output parameters Type Description

This variable is true when the block is com-

DONE BOOL pletely executed. It is false otherwise.

This variable is true while the block is be-

EXEC BOOL ing executed. It is false otherwise.

This variable is true when the block con-
cludes the execution with an error. It is
ERROR BOOL false otherwise. It is connected to the vari-
able DONE, as its status is showed after the
block conclusion.

In case the ERROR variable is true, the
STATUS structure will show the error
found during the block execution. The
possible states, already described in the
SERIAL_STATUS data type, are:
STATUS SERIAL_STATUS - NO_ERROR

- ILLEGAL_SERIAL_PORT

- ILLEGAL_SERIAL_MODE

- ILLEGAL_BAUDRATE

- ILLEGAL_DATA_BITS

- ILLEGAL_PARITY

- ILLEGAL_STOP_BITS

- ILLEGAL_HANDSHAKE

- ILLEGAL_UART_RX_THRESHOLD
- PORT_BUSY

- HW_ERROR_UART

- HW_ERROR_REMOTE

- DCD_INTERRUPT_NOT_ALLOWED
- CTS_INTERRUPT_NOT_ALLOWED

- DSR_INTERRUPT_NOT_ALLOWED

Table 169: SERIAL_CFG Output Parameters

Utilization example in ST language, after the library Nexto Serial is inserted in the project:

PROGRAM UserPrg

VAR

Config: SERIAL_CFG;

Port: SERIAL_PORT := COMl;
Parameters: SERIAL_PARAMETERS := (BAUDRATE := BAUD9600,
DATABITS := DATABITS_S3,
STOPBITS := STOPBITS_1,
PARITY := PARITY_NONE,
HANDSHAKE := RS232_RTS,
UART_RX_THRESHOLD := 8,
MODE :=NORMAIL_MODE,
ENABLE_RX ON_TX := FALSE,
ENABLE_DCD_EVENT := FALSE,
ENABLE_CTS_EVENT := FALSE);
Status: SERIAL_STATUS;
END_VAR

//INPUTS:

Config.REQUEST := TRUE;
Config.PORT := Port;

230

5. CONFIGURATION

Config.PARAMETERS := Parameters;

//FUNCTION:
Config();
//OUTPUTS:
Config.DONE;
Config.EXEC;
Config.ERROR;

Status := Config.STATUS;

5.12.1.2. SERIAL_GET_CFG

//If it is necessary to treat the error.

The function block is used to capture the desired serial port configuration.

SERIAL_GET_CFG
—REQUEST [ME —
—PORT EREC —
ERROR —
STATUS —
PARAMETERS F—
Figure 135: Block to Capture the Serial Configuration
Input parameters Type Description

REQUEST

BOOL

This variable, when true, enables the func-
tion block use.

PORT

SERIAL_PORT

Select the serial port, as described in the
SERIAL_PORT data type.

Table 170: SERIAL_GET_CFG Input Parameters

Output parameters

Type

Description

This variable is true when the block is com-

DONE BOOL pletely executed. It is false otherwise.
EXEC BOOL This variable is 'true while the plock is be-
ing executed. It is false otherwise.
This variable is true when the block con-
cludes the execution with an error. It is
ERROR BOOL false otherwise. It is connected to the vari-

able DONE, as its status is showed after the
block conclusion.

231

5. CONFIGURATION

Output parameters Type Description

In case the ERROR variable is true, the
STATUS structure will show the error
found during the block execution. The
possible states, already described in the
SERIAL_STATUS data type, are:

- NO_ERROR

- ILLEGAL_SERIAL_PORT

- PORT_BUSY

- HW_ERROR_UART

- HW_ERROR_REMOTE

- NOT_CONFIGURED
This structure receives the serial port con-
PARAMETERS SERIAL_PARAMETERS| figuration parameters, as described in the
SERIAL_PARAMETERS data type.

STATUS SERIAL_STATUS

Table 171: SERIAL_GET_CFG Output Parameters

Utilization example in ST language, after the library is inserted in the project:

PROGRAM UserPrg

VAR
GetConfig: SERIAL_GET_CFG;
Port: SERIAL_PORT := COMI1;

Parameters: SERIAL_PARAMETERS;
Status: SERIAL_STATUS;
END_VAR

//INPUTS:
GetConfig.REQUEST := TRUE;
GetConfig.PORT := Port;
//FUNCTION:

GetConfig();

//OUTPUTS:

GetConfig.DONE;
GetConfig.EXEC;
GetConfig.ERROR;

Status := GetConfig.STATUS; //If it i1s necessary to treat the error.
Parameters := GetConfig.PARAMETERS; //Receive the parameters of desired serial
port.

5.12.1.3. SERIAL_GET_CTRL

This function block is used to read the CTS, DSR and DCD control signals, in case they are available in the serial port. A
false value will be returned when there are not control signals.

5. CONFIGURATION

SERIAL_GET_CTRL

—REQUEST
—PORT

DOME F—

EXEC F—
ERROR —
STATUS F—
CTS_VALLE —
D3R _MALUE F—
D0 MALLE B—

Figure 136: Block Used to Visualize the Control Signals

Input parameters

Type

Description

REQUEST

BOOL

This variable, when true, enables the func-
tion block use.

PORT

SERIAL_PORT

Select the serial port, as described in the
SERIAL_PORT data type.

Table 172: SERIAL_GET_CTRL Input Parameters

Output parameters

Type

Description

DONE

BOOL

This variable is true when the block is com-
pletely executed. It is false otherwise.

EXEC

BOOL

This variable is true while the block is be-
ing executed. It is false otherwise.

ERROR

BOOL

This variable is true when the block con-
cludes the execution with an error. It is
false otherwise. It is connected to the vari-
able DONE, as its status is showed after the
block conclusion.

STATUS

SERIAL_STATUS

In case the ERROR variable is true, the
STATUS structure will show the error
found during the block execution. The
possible states, already described in the
SERIAL_STATUS data type, are:

- NO_ERROR

- ILLEGAL_SERIAL_PORT

- PORT_BUSY

- HW_ERROR_UART

- HW_ERROR_REMOTE

- FB_GET_CTRL_NOT_ALLOWED

- NOT_CONFIGURED

CTS_VALUE

BOOL

Value read in the CTS control signal.

DSR_VALUE

BOOL

Value read in the DSR control signal.

DCD_VALUE

BOOL

Value read in the DCD control signal.

Table 173: SERTAL_GET_CTRL Output Parameters

233

altus

5. CONFIGURATION

Utilization example in ST language, after the library is inserted in the project and the serial port configured:

PROGRAM UserPrg

VAR

Get_Control: SERIAL_GET_CTRL;
Port: SERIAL_PORT := COM1;
Status: SERIAL_STATUS;
END_VAR

//INPUTS:

Get_Control .REQUEST := TRUE;
Get_Control.PORT := Port;
//FUNCTION:

Get_Control () ;

//OUTPUTS :

Get_Control.DONE;

Get_Control.EXEC;

Get_Control.ERROR;

Status := Get_Control.STATUS; //If it is necessary to treat the error.
Get_Control.CTS_VALUE;

Get_Control.DSR_VALUE;

Get_Control.DCD_VALUE;

5.12.1.4. SERIAL_GET_RX_QUEUE_STATUS

This block is used to read some status information regarding the RX queue, specially developed for the normal mode, but
it can also be used in the extended mode.

SERIAL_GET_RX_QUEUE_STATUS
—REQUEST & DOME —
—PORT) EXEC b—
ERROR f—
STATUS —
R¥Q_STATUS —

Figure 137: Block Used to Visualize the RX Queue Status

Input parameters Type Description

REQUEST BOOL ThlS variable, when true, enables the func-
tion block use.

Select the serial port, as described in the
PORT SERIAL_PORT SERIAL_PORT data type.

Table 174: SERIAL_GET_RX_QUEUE_STATUS Input Parameters

234

5. CONFIGURATION

Output parameters Type Description
DONE BOOL This variable is true yvhen the bloclf is com-
pletely executed. It is false otherwise.
EXEC BOOL This variable is 'true while the plock is be-
ing executed. It is false otherwise.
This variable is true when the block con-
cludes the execution with an error. It is
ERROR BOOL false otherwise. It is connected to the vari-
able DONE, as its status is showed after the
block conclusion.
In case the ERROR variable is true, the
STATUS structure will show the error
found during the block execution. The
STATUS SERIAL_STATUS possible states, already described in the
SERIAL_STATUS data type, are:
- NO_ERROR
- ILLEGAL_SERIAL_PORT
- PORT_BUSY
- HW_ERROR_UART
- HW_ERROR_REMOTE
- NOT_CONFIGURED
Returns the RX queue status/er-
SERIAL_RX ror, as described in the SE-
RXQ_STATUS QUEUE_STATUS RIAL_RX_QUEUE_STATUS data
type.

Table 175: SERIAL_GET_RX_QUEUE_STATUS Output Parameters

Utilization example in ST language, after the library is inserted in the project and the serial port configured:

PROGRAM UserPrg
VAR

Get_Status: SERIAL_GET_RX_ QUEUE_STATUS;
Port: SERIAL_PORT := COMI1;

Status: SERIAL_STATUS;

Status_RX: SERIAL_RX_QUEUE_STATUS;

END_VAR
//INPUTS:
Get_Status.REQUEST :=

TRUE;

Get_Status.PORT := Port;

//FUNCTION:
Get_Status () ;
//OUTPUTS:
Get_Status.DONE;
Get_Status.EXEC;
Get_Status.ERROR;

Status := Get_Status.STATUS;

Status_RX := Get_Status.RXQ_STATUS;

the RX.

//If it is necessary to treat the error.
//If it 1s necessary to treat the error of

235

5. CONFIGURATION

5.12.1.5. SERIAL_PURGE_RX_QUEUE

This function block is used to clean the serial port RX queue, local and remote. The UART RX FIFO is restarted too.

SERIAL_PURGE_RX_QUEUE

—REQUEST
—PORT

DOME —
EXEC F—
ERROR —
STATUS —

Figure 138: Block Used to Clean the RX Queue

Input parameters

Type

Description

REQUEST

BOOL

This variable, when true, enables the func-
tion block use.

PORT

SERIAL_PORT

Select the serial port, as described in the
SERIAL_PORT data type.

Table 176: SERIAL_PURGE_RX_QUEUE Input Parameters

Output parameters

Type

Description

DONE

BOOL

This variable is true when the block is com-
pletely executed. It’s false otherwise.

EXEC

BOOL

This variable is true while the block is be-
ing executed. It’s false otherwise.

ERROR

BOOL

This variable is true when the block con-
cludes the execution with an error. It’s
false otherwise. It is connected to the vari-
able DONE, as its status is showed after the
block conclusion.

STATUS

SERIAL_STATUS

In case the ERROR variable is true, the
STATUS structure will show the error
found during the block execution. The
possible states, already described in the
SERIAL_STATUS data type, are:

- NO_ERROR

- ILLEGAL_SERIAL_PORT

- PORT_BUSY

- HW_ERROR_UART

- HW_ERROR_REMOTE

- NOT_CONFIGURED

Table 177: SERIAL_PURGE_RX_QUEUE Output Parameters

236

5. CONFIGURATION

Utilization example in ST language, after the library is inserted in the project and the serial port configured:

PROGRAM UserPrg

VAR

Purge_Queue: SERIAL_PURGE_RX_ QUEUE;
Port: SERIAL_PORT := COMl;
Status: SERIAL_STATUS;
END_VAR

//INPUTS:
Purge_Queue.REQUEST := TRUE;
Purge_Queue.PORT := Port;
//FUNCTION:

Purge_Queue () ;

//OUTPUTS:

Purge_Queue.DONE;
Purge_Queue.EXEC;
Purge_Queue.ERROR;
Status := Purge_Queue.STATUS; //If it is necessary to treat the error.

5.12.1.6. SERIAL_RX

This function block is used to receive a serial port buffer, using the RX queue normal mode. In this mode, each character
in the RX queue occupy a single byte which has the received data, storing 5, 6, 7 or 8 bits, according to the serial interface
configuration.

SERIAL_RX
—REQUEST DOME —
—PORT = ; EXEC F—
—R.x_BUFFER_POINTER . ERROR —
— R _BUFFER_|LEMNGTH STATUS —
— R _TIMECUT R _RECEIWED F—
R _REMAINING —

Figure 139: Block Used to Read the Reception Buffer Values

Input parameters Type Description

REQUEST BOOL Thls variable, when true, enables the func-
tion block use.

Select the serial port, as described in the

PORT SERIAL_PORT SERIAL_PORT data type.
RX_BUFFER_ Pointer of a byte array to receive the buffer
POINTER POINTER TO BYTE values.
Specify the expected character number in
the byte array. In case more than the ex-
RX_BUFFER_ UINT PeC:ej bytﬁ:itare i?lvlillarblec’l f(r)nllz t;hebe)t(-
LENGTH pected quantity will be read fro e byte

array, the rest will be leaved in the RX
queue (maximum size equal to 1024 char-
acters).

237

5. CONFIGURATION

Input parameters

Type

Description

RX_TIMEOUT

UINT

Specify the time-out to receive the ex-
pected character quantity. In case it is
smaller than the necessary to receive the
characters, the RX_TIME-OUT_ERROR
output from the STATUS parameter will be
indicated. When the specified value, in ms,
is equal to zero, the function will return the
data within the buffer.

Table 178: SERIAL_RX Input Parameters

Output parameters

Type

Description

DONE

BOOL

This variable is true when the block is com-
pletely executed. It is false otherwise.

EXEC

BOOL

This variable is true while the block is be-
ing executed. It is false otherwise.

ERROR

BOOL

This variable is true when the block con-
cludes the execution with an error. It is
false otherwise. It is connected to the vari-
able DONE, as its status is showed after the
block conclusion.

STATUS

SERIAL_STATUS

In case the ERROR variable is true, the
STATUS structure will show the error
found during the block execution. The
possible states, already described in the
SERIAL_STATUS data type, are:

- NO_ERROR

- ILLEGAL_SERIAL_PORT

- PORT_BUSY

- HW_ERROR_UART

- HW_ERROR_REMOTE

- ILLEGAL_RX_BUFF_LENGTH

- RX_TIMEOUT_ERROR

- FB_SERIAL_RX_NOT_ALLOWED

- NOT_CONFIGURED

RX_RECEIVED

UINT

Returns the received characters num-
ber. This number can be within
zero and the configured value in
RX_BUFFER_LENGTH. In case it is
smaller, an error will be indicated by the
function block.

RX_REMAINING

UINT

Returns the number of characters which
are still in the RX queue after the function
block execution.

Table 179: SERIAL_RX Output Parameters

238

5. CONFIGURATION

Utilization example in ST language, after the library is inserted in the project and the serial port configured:

PROGRAM UserPrg

VAR

Receive: SERIAL_RX;

Port: SERIAL_PORT := COM1;

Buffer_Pointer: ARRAY [0..1023] OF BYTE; //Max size.
Status: SERIAL_STATUS;

END_VAR

//INPUTS:

Receive.REQUEST := TRUE;

Receive.PORT := Port;

Receive .RX_BUFFER_POINTER := ADR (Buffer_ Pointer);
Receive.RX_BUFFER_LENGTH := 1024; //Max size.
Receive.RX_TIMEOUT := 10000;

//FUNCTION:

Receive () ;

//OUTPUTS:

Receive.DONE;

Receive.EXEC;

Receive.ERROR;

Status := Receive.STATUS; //If it is necessary to treat the error.
Receive.RX_RECEIVED;

Receive.RX_REMAINING;

5.12.1.7. SERIAL_RX EXTENDED

This function block is used to receive a serial port buffer using the RX queue extended mode as shown in the Serial
Interfaces Configuration section.

SERIAL_RX_EXTENDED

—REQLUEST . DOME—
—FORT ¥ : EXEC —
—R.%_BUFFER_POINTER ERROFR. f—
—Rx_BUFFER_LEMGTH STATUS —
—Rx_TIMEQUT R¥_RECEIVED —
R _REMAINING F—

R¥_SILEMCE f—

Figure 140: Block Used for Reception Buffer Reading

Input parameters Type Description
REQUEST BOOL ThlS variable, when true, enables the func-
tion block use.
Select the serial port, as described in the
PORT SERIAL_PORT SERIAL_PORT data type.
Pointer of a SE-
RX_BUFFER_ POINTER TO SE-
POINTER RIAL_RX CHAR RIAL_RX_CHAR_EXTENDED array to
receive the buffer values.
_EXTENDED
239

5. CONFIGURATION

Input parameters

Type

Description

RX_BUFFER_
LENGTH

UINT

Specify the expected character number
in the SERIAL_RX_CHAR_EXTENDED
array. In case more than the expected bytes
are available, only the expected quantity
will be read from the byte array, the rest
will be leaved in the RX queue (maximum
size equal to 1024 characters).

RX_TIMEOUT

UINT

Specify the time-out to receive the ex-
pected character quantity. In case it is
smaller than the necessary to receive the
characters, the RX_TIMEOUT_ERROR
output from the STATUS parameter will be
indicated. When the specified value, in ms,
is equal to zero, the function will return the
data within the buffer.

Table 180: SERIAL_RX_EXTENDED Input Parameters

Output parameters

Type

Description

DONE

BOOL

This variable is true when the block is com-
pletely executed. It is false otherwise.

EXEC

BOOL

This variable is true while the block is be-
ing executed. It is false otherwise.

ERROR

BOOL

This variable is true when the block con-
cludes the execution with an error. It is
false otherwise. It is connected to the vari-
able DONE, as its status is showed after the
block conclusion.

STATUS

SERIAL_STATUS

In case the ERROR variable is true, the
STATUS structure will show the error
found during the block execution. The
possible states, already described in the
SERIAL_STATUS data type, are:

- NO_ERROR

- ILLEGAL_SERIAL_PORT

- PORT_BUSY

- HW_ERROR_UART

- HW_ERROR_REMOTE

- ILLEGAL_RX_BUFF_LENGTH

- RX_TIMEOUT_ERROR

- FB_SERIAL_RX_EXTENDED_NOT
_ALLOWED

- NOT_CONFIGURED

RX_RECEIVED

UINT

Returns the received characters num-
ber. This number can be within
zero and the configured value in
RX_BUFFER_LENGTH. In case it is
smaller, an error will be indicated by the
function block.

240

5. CONFIGURATION

Output parameters Type Description

Returns the number of characters which
RX_REMAINING UINT are still in the RX queue after the function
block execution.

Returns the silence time in the RX queue,
measured since the last received charac-
ter is finished. The time unit is 10 us.
This output parameter type is important
RX_SILENCE UINT to detect the silence time in protocols as
MODBUS RTU. It might not be the si-
lence time after the last received character
by this function block, as it is only true if
RX_REMAINING = 0.

Table 181: SERIAL_RX_EXTENDED Output Parameters

Utilization example in ST language, after the library is inserted in the project and the serial port configured:

PROGRAM UserPrg

VAR
Receive_Ex: SERIAL_RX_ EXTENDED;
Port: SERIAL_PORT := COMI1;

Buffer Pointer: ARRAY [0..1023] OF SERIAL_RX_ CHAR EXTENDED;
Status: SERIAL_STATUS;

END_VAR

//INPUTS:

Receive_Ex.REQUEST := TRUE;

Receive_Ex.PORT := Port;

Receive_Ex.RX_BUFFER_POINTER := ADR(Buffer_Pointer);
Receive_Ex.RX_BUFFER_LENGTH := 1024; //Max size.
Receive_Ex.RX_TIMEOUT := 10000;

//FUNCTION:

Receive_Ex () ;

//OUTPUTS:

Receive_Ex.DONE;

Receive_Ex.EXEC;

Receive_Ex.ERROR;

Status := Receive_Ex.STATUS; //If it is necessary to treat the error.
Receive_Ex.RX_RECEIVED;

Receive_Ex.RX_REMAINING;

Receive_Ex.RX_SILENCE;

5.12.1.8. SERIAL_SET_CTRL

This block is used to write on the control signals (RTS and DTR), when they are available in the serial port. It can also set
a busy condition for the transmission, through BREAK parameter and it can only be used if the modem signal is configured
for RS232_MANUAL.

5. CONFIGURATION

SERIAL_SET_CTRL

—REGUEST
—PORT
—RTS_WALUE
—RTS_EN
—DTR_VALUE
—DTR_EM
—BREAK

DOME F—
EXEC —
ERROR —
STATUS —

Figure 141: Block for Control Signals Writing

Input parameters Type Description
REQUEST BOOL ThlS variable, when true, enables the func-
tion block use.
Select the serial port, as described in the
PORT SERIAL_PORT SERIAL_PORT data type.
RTS_VALUE BOOL Value to be written on RTS signal.
RTS_EN BOOL iEIllrt;ables the RTS_VALUE parameter writ-
DTR_VALUE BOOL Value to be written on DTR signal.
DTR_EN BOOL i?;ables the DTR_VALUE parameter writ-
BREAK BOOL In case it s trpe, e.:nables logic O (busy) in
the transmission line.

Table 182: SERIAL_SET_CTRL Input Parameters

Output parameters

Type

Description

DONE

BOOL

This variable is true when the block is com-
pletely executed. It is false otherwise.

EXEC

BOOL

This variable is true while the block is be-
ing executed. It is false otherwise.

ERROR

BOOL

This variable is true when the block con-
cludes the execution with an error. It is
false otherwise. It is connected to the vari-
able DONE, as its status is showed after the
block conclusion.

STATUS

SERIAL_STATUS

In case the ERROR variable is true, the
STATUS structure will show the error
found during the block execution. The
possible states, already described in the
SERIAL_STATUS data type, are:

- NO_ERROR

- ILLEGAL_SERIAL_PORT

- PORT_BUSY

- HW_ERROR_UART

- HW_ERROR_REMOTE

- FB_SET_CTRL_NOT_ALLOWED

- NOT_CONFIGURED

Table 183: SERTAL_SET_CTRL Output Parameters

242

altus

5. CONFIGURATION

Utilization example in ST language, after the library is inserted in the project and the serial port configured:

PROGRAM UserPrg

VAR

Set_Control: SERIAL_SET CTRL;
Port: SERIAL_PORT := COMl;
Status: SERIAL_STATUS;

END_VAR

//INPUTS:

Set_Control.REQUEST := TRUE;
Set_Control.PORT := Port;
Set_Control.RTS_VALUE := FALSE;
Set_Control.RTS_EN := FALSE;
Set_Control.DTR_VALUE := FALSE;
Set_Control.DTR_EN := FALSE;
Set_Control.BREAK := FALSE;
//FUNCTION:

Set_Control ();

//OUTPUTS:

Set_Control.DONE;
Set_Control.EXEC;
Set_Control.ERROR;

Status := Set_Control.STATUS;

5.12.1.9. SERIAL_TX

//If it is necessary to treat the error.

This function block is used to transmit a data buffer through serial port and it is only finalized after all bytes were transmitted

or after time-out (generating errors).

—REQUEST

—FORT

— T _EBUFFER._FPOIMTER
—Ta_BUFFER_LEMGTH
— Te_TIMECUT
—DELAY_BEFORE_TX

SERIAL_TX

—|CLEAR_RY%_BEFORE_TX

DOME B—

EXEC —

ERROR —

STATUS F—
Te_TRAMSMITTED F—

Figure 142: Block for Values Transmission by the Serial

Input parameters Type Description

REQUEST BOOL Thls variable, when true, enables the func-

tion block use.

Select the serial port, as described in the
PORT SERIAL_PORT SERIAL_PORT data type.
TX_BUFFER_ Pointer of a byte array to transmit the
POINTER POINTER TO BYTE buffer values.

Specify the expected character number in
TX_BUFFER_ UINT the byte array to be transmitted (TX queue
LENGTH . o

maximum size is 1024 characters).

243

5. CONFIGURATION

Input parameters

Type

Description

Specify the time-out to complete the trans-
mission including the handshake phase.

TX_TIMEOUT UINT The specified value, in ms, must be posi-
tive and different than zero.
Specify the delay, in ms, between the func-
DELAY_BEFORE_ UINT tion block call and the transmission begin-
TX ning. This variable can be used in commu-
nications with some modems.
When true, the RX queue and the UART
CLEAR_RX_ BOOL FIFO RX are erased before the transmis-
BEFORE_TX sion beginning. This behavior is typical in

half-duplex master/slave protocols.

Table 184: SERIAL_TX Input Parameters

Output parameters

Type

Description

DONE

BOOL

This variable is true when the block is com-
pletely executed. It is false otherwise.

EXEC

BOOL

This variable is true while the block is be-
ing executed. It is false otherwise.

ERROR

BOOL

This variable is true when the block con-
cludes the execution with an error. It is
false otherwise. It is connected to the vari-
able DONE, as its status is showed after the
block conclusion.

STATUS

SERIAL_STATUS

In case the ERROR variable is true, the
STATUS structure will show the error
found during the block execution. The
possible states, already described in the
SERIAL_STATUS data type, are:

- NO_ERROR

- ILLEGAL_SERIAL_PORT

- PORT_BUSY

- HW_ERROR_UART

- HW_ERROR_REMOTE

- ILLEGAL_TX_BUFF_LENGTH

- ILLEGAL_TIMEOUT

- CTS_TIMEOUT_ON

- CTS_TIMEOUT_OFF

- TX_TIMEOUT_ERROR

- NOT_CONFIGURED

TX_TRANSMITTELD

UINT

Returns the transmitted byte number which
must be equal to TX_BUFFER_LENGTH,
but can be smaller in case some error has
occurred during transmission.

Table 185: SERIAL_TX Output Parameters

5. CONFIGURATION

Utilization example in ST language, after the library is inserted in the project and the serial port configured:

PROGRAM UserPrg

VAR

Transmit: SERIAL_TX;

Port: SERIAL_PORT := COMl;

Buffer_Pointer: ARRAY [0..9] OF BYTE := [0,1,2,3,4,5,6,7,8,9];
Status: SERIAL_STATUS;

END_VAR

//INPUTS:

Transmit .REQUEST := TRUE;

Transmit .PORT := Port;

Transmit.TX_ _BUFFER_POINTER := ADR (Buffer_Pointer);
Transmit.TX_BUFFER_LENGTH := 10;
Transmit.TX_TIMEOUT := 10000;
Transmit .DELAY BEFORE_TX := 1000;
Transmit.CLEAR_RX_BEFORE_TX := TRUE;

//FUNCTION:

Transmit () ;

//OUTPUTS :

Transmit .DONE;
Transmit .EXEC;
Transmit .ERROR;

Status := Transmit.STATUS; //If it is necessary to treat the error.
Transmit .TX_TRANSMITTED;

5.12.2. Inputs and Outputs Update

By default, the local bus and CPU integrated I/O are updated on every execution cycle of MainTask. The Refresh functions
allows to update these I/O points asynchronously at any point of user application code.

When the function blocks to update the inputs and outputs are not used, the update is performed every cycle of the Main-
Task.

At the startup of a CPU of this series, the inputs and outputs are only updated for reading
and prepared for writing when the MainTask is performed.
All other system tasks that run before MainTask will be with the inputs and outputs invalid.

5.12.2.1. REFRESH_INPUT

This function block is used to update the specified module inputs without the necessity to wait for the cycle to be completed.
It is important to notice that the filters configured in the MasterTool IEC XE and the update time of the module inputs will
have to be considered in effective time of the inputs update in the application developed by the user.

The REFRESH_INPUT function must only be used in MainTask.
To update inputs in other tasks, the option Enable I/0 update per task must be selected, for
further information about this option, consult Table 44.

245 ¢

Q

\

&

5. CONFIGURATION

ATTENTION

REFRESH_INPUT function does not support inputs that have been mapped to symbolic
variables. For proper operation it is necessary that the input is mapped to a variable within
the memory direct representation of input variables (%]I).

7

ATTENTION

The REFRESH_INPUT function updates only the direct variables %I that are declared in the
"Bus: I/O Mapping" tab of the module addressed in the respective rack/slot of the function.
In the case of communication modules/interfaces (MODBUS, Profibus, etc.), the update does
not include the direct variables of the device mappings.

EEFEESH INFUT

—byRackNumber —
—by3lotHumber

Figure 143: Block for Input Updating

Input parameters Type Description
byRackNumber BYTE Rack number.
bySlotNumber BYTE E;)Cs;t:l(;)n number where the module is con-

Table 186: REFRESH_INPUT Input Parameters

Possible TYPE_RESULT:

= OK_SUCCESS: Execution success.
ERROR_FAILED: This error is returned if the function is called for a module that has only outputs, or also if the option
Always update variables (located in the module’s configuration screen, tab I/O Mapping) is not checked.
ERROR_NOTSUPPORTED: The called routine is not supported by the product.
ERROR_PARAMETER: Invalid / unsupported parameter.

ERROR_MODULE_ABSENT: The module is absent in the bus.
ERROR_MODULE_NOTCONFIGURED: The module is not configured in the application.
ERROR_MODULE_NOTRUNNING: The module is not running (is not in operational state).
ERROR_MODULE_COMMFAIL: Failure in the communication with the module.
ERROR_MODULE_NOTFOUND: The module was not found in the application or is not supported.

Utilization example in ST language:

PROGRAM UserPrg
VAR

Info: TYPE_RESULT;
byRackNumber: BYTE;
bySlotNumber: BYTE;

END_VAR

//INPUTS:

byRackNumber := 0;

bySlotNumber := 10;

//FUNCTION:

Info := REFRESH_INPUT (byRackNumber, bySlotNumber); //Function call.

//Variable "Info" receives possible function errors.

246

Q
=
G

\

5. CONFIGURATION

5.12.2.2. REFRESH_OUTPUT

This function block is used to update the specified module outputs. It is not necessary to wait until the cycle is finished. It
is important to notice that the update time of the module outputs will have to be considered in the effective time of the outputs
update in the application developed by the user.

ATTENTION

The REFRESH_OUTPUT function must only be used in MainTask.
To update outputs in other tasks, the option Enable I/0 update per task must be selected, for
further information about this option, consult Table 44.

ATTENTION

REFRESH OUTPUT function does not support inputs that have been mapped to symbolic
variables. For proper operation it is necessary that the input is mapped to a variable within
the memory direct representation of input variables (%Q).

ATTENTION

The REFRESH_OUTPUT function updates only the direct variables %Q that are declared
in the "Bus: I/O Mapping" tab of the module addressed in the respective rack/slot of the
function. In the case of communication modules/interfaces (MODBUS, Profibus, etc.), the
update does not include the direct variables of the device mappings.

REFRESH OUTFUT
—byRackNumber —

—bySlotNumber

Figure 144: Block for Output Updating

Input parameters Type Description
byRackNumber BYTE Rack number.
bySlotNumber BYTE ::szzlgn number where the module is con-

Table 187: REFRESH_OUTPUT Input Parameters

Possible TYPE_RESULT:

= OK_SUCCESS: Execution success.

= ERROR_FAILED: This error is returned if the function is called for a module that has only inputs, or also if the option
Always update variables (located in the module’s configuration screen, tab I/O Mapping) is not checked.

= ERROR_NOTSUPPORTED: The called routine is not supported by the product.

= ERROR_PARAMETER: Invalid / unsupported parameter.

= ERROR_MODULE_ABSENT: The module is absent in the bus.

= ERROR_MODULE_NOTCONFIGURED: The module is not configured in the application.

= ERROR_MODULE_NOTRUNNING: The module is not running (is not in operational state).

= ERROR_MODULE_COMMPFAIL: Failure in the communication with the module.

= ERROR_MODULE_NOTFOUND: The module was not found in the application or is not supported.

Utilization example in ST language:

247

Q
=
G

\

5. CONFIGURATION

PROGRAM UserPrg

VAR

Info: TYPE_RESULT;

byRackNumber: BYTE;

bySlotNumber: BYTE;

END_VAR

//INPUTS:

byRackNumber := 0;

bySlotNumber 10;

//FUNCTION:

//Function call.

Info := REFRESH_OUTPUT (byRackNumber, bySlotNumber);
//Variable "Info" receives possible function errors.

5.12.3. PID Function Block

ATTENTION

The PID function block described up to previous revision L of this manual became obsolete
and was removed from this manual.

The PID, PID_INT and PID_REAL function blocks described up to revision C of
MP399609, also became obsolete and were also removed from newer versions of that man-
ual. Users that need description of these obsolete function blocks due to maintenance reasons
must use revision C of MP399609.

Function blocks PID, PID_INT and PID_REAL must not be used in new projects. These
function blocks were replaced by newer function blocks with additional resources, like auto-
tuning and support to cascade, override and feed-forward controls. These new function
blocks are described in MU214610, and are available after version 1.1.0.0 of library Nex-
toPID.

5.12.4. Timer Retain

The timer retain is a function block developed for applications as production line clocks, that need to store its value and
restart the counting from the same point in case of power supply failure. The values stored by the function block, are only zero
in case of a Reset Cold, Reset Origin or a new application Download (see the MasterTool IEC XE User Manual - MU299609),
when the counters keep working, even when the application is stopped (Stop Mode).

It is important to stress that, for the correct functioning of the Timer Retain blocks, the
variables must be declared as Retain (VAR RETAIN). It’s also important to notice that in
simulation mode, the Timer Retain function blocks do not run properly due to need the
Nexto CPU for correct behavior.

The three blocks already available in the MasterTool IEC XE software NextoStandard library are described below (for the
library insertion proceeding, see MasterTool IEC XE Programming Manual — MP399609, section Library).

248

Q
=
G

\

5. CONFIGURATION

5.12.4.1. TOF_RET

The function block TOF_RET implements a time delay to disable an output. When the input IN has its state changed from
(TRUE) to (FALSE), or a falling edge, the specified time PT will be counted and the Q output will be driven to (FALSE) at the
end of it. When the input IN is in logic level 1 (TRUE), the output Q remain in the same state (TRUE), even if this happened
in the middle of the counting process. The PT time can be changed during the counting as the block assumes the new value if
the counting hasn’t finished. Figure 145 depicts the TOF_RET block and Figure 146 shows its graphic behavior.

Figure 145: TOF_RET Block

Input parameters Type Description
IN BOOL This variable, when receives a falling edge,
enables the block counting.
PT TIME This variable specifies the block counting

limit (time delay).

Table 188: TOF_RET Input Parameters

Output parameters Type Description
This variable executes a falling edge as the
Q BOOL PT variable (time delay) reaches its maxi-
mum value.
ET TIME This variable shows the current time delay.

Table 189: TOF_RET Output Parameters

L] L
0 1 1w ih
L]
_ L L
tl t1+PT 2 15+PT
| ranil
« /A _/,
1 @2t th

Figure 146: TOF_RET Block Graphic Behavior

5. CONFIGURATION

Utilization example in ST language:

PROGRAM UserPrg
VAR RETAIN
bStart : BOOL

TOF_RET : TOF_RET;

END_VAR

// When bStart=FALSE starts counting

TOF_RET(IN := bStart,

PT := T#20S);

// Actions executed at the end of the counting

IF (TOF_RET.Q = FALSE)

bStart := TRUE;
END_TF

5.12.4.2. TON_RET

THEN

The TON_RET implements a time delay to enable an output. When the input IN has its state changed from (FALSE) to
(TRUE), or a rising edge, the specified time PT will be counted and the Q output will be driven to (TRUE) at the end of it.
When the input IN is in logic level 0 (FALSE), the output Q remain in the same state (FALSE), even if it happens in the middle
of the counting process. The PT time can be changed during the counting as the block assumes the new value if the counting
hasn’t finished. Figure 147 depicts the TON_RET block and Figure 148 shows its graphic behavior.

— 1IN

TON_RET

& <t
ETF—

Figure 147: TON_RET Function Block

Input parameters Type Description
IN BOOL This variable, when receives a r1§1ng edge,
enables the function block counting.
PT TIME This variable specifies the block counting

limit (time delay).

Table 190: TON_RET Input Parameters

Output parameters Type Description
This variable executes a rising edge as the
Q BOOL PT variable (time delay) reaches its maxi-
mum value.
ET TIME

This variable shows the current time delay.

Table 191: TON_RET Output Parameters

250

5. CONFIGURATION

"L TLT

213 t4 t5

=

t0 +PT t1 t4+PT 5

AT
AN
o
t4 t5

0 11 t2 13

'

Figure 148: TON_RET Block Graphic Behavior

Utilization example in ST language:

PROGRAM UserPrg
VAR RETAIN

bStart : BOOLj;
TON_RET : TON_RET;
END_VAR

// Quando bStart=TRUE starts counting
TON_RET(IN := bStart,
PT := T#208S);

// Actions executed at the end of the counting
IF (TON_RET.Q = TRUE) THEN

bStart := FALSE;

END_TF

5.124.3. TP_RET

The TP_RET function block works as a trigger. The timer which starts when the IN input has its state changed from
(FALSE) to (TRUE), that is, a rising edge, it is increased until the PT time limit is reached. During the counting, the Q output
is (TRUE), otherwise it is (FALSE). The PT time can be changed during the counting as the block assumes the new value if
the counting has not finished. Figure 149 depicts the TP_RET and Figure 150 shows its graphic behavior.

TP_RET
—n : QI
—pT ETH

Figure 149: TP_RET Function Block

Input parameters Type Description

This variable, when receives a rising edge,

IN BOOL enables the function block counting.

This variable specifies the function block

PT TIME counting limit (time delay).

Table 192: TP_RET Input Parameters

251 altus

5. CONFIGURATION

Output parameters

Type

Description

Q

BOOL

This variable is true during the counting,
otherwise is false.

ET

TIME

This variable shows the current time delay.

Utilization example in ST language:

PROGRAM UserPrg
VAR RETAIN
bStart : BOOL;
TP_RET : TP_RET;
END_VAR

// Configure TP_RET

TP_RET(IN := bStart,
PT := T#20S);
bStart := FALSE;

Table 193: TP_RET Output Parameters

o8 Y TG A

0 11 213 14 15
4]

il S 11y i

th t0+PT 12 424PT 14 44PT

BT

/1AL

ef by g
il 11 t2 d 5

Figure 150: TP_RET Block Graphic Behavior

// Actions executed during the counting
IF (TP_RET.Q = TRUE) THEN
// Executes while the counter is activated

ELSE

// Executes when the counter is deactivated

END_TF

5.12.5. Non-Redundant Timer

The non-redundant timer is used in applications for the redundant NX3030 CPU which need a timer in the non-redundant
program of a half-cluster. This timer does not use the IEC timer, therefore, it will not be synchronized in case the reserve

half-cluster assumes the active status and the active one goes for reserve.

The three types of blocks already available in the NextoStandard library of the MasterTool IEC XE software are describe as
follows (for doing the procedure of library’s inclusion, check MasterTool IEC XE Programming Manual — MP399608, section

Library).

252

5. CONFIGURATION

5.12.5.1. TOF_NR

The TOF_NR function block implements a delay time for disabling an output and has its functioning and configuration
similar to the TOF_RET function block, differentiating itself only for not being redundant nor retentive.

TOF_NR
—IIN Q) —
—PT ETH—

Figure 151: TOF_NR Function Block

Utilization example in ST language:

PROGRAM NonSkippedPrg

VAR

bStart : BOOL := TRUE;
TOF_NR : TOF_NR;
END_VAR

// When bStart=FALSE starts the counting
TOF_NR(IN := bStart,
PT := T#20S);

// Actions executed at the end of the counting
IF (TOF_NR.Q = FALSE) THEN

bStart := TRUE;

END_TIF

5.12.5.2. TON_NR

The TON_NR function block implements a delay time to enable an output and has its functioning and configuration similar
to the TON_RET function block, differentiating only for not being redundant nor retentive.

TON_NR
—IM Q—
—pT ETH—

Figure 152: TON_NR Function Block

253

]
=
G

\

5. CONFIGURATION

Utilization example in ST language:

PROGRAM NonSkippedPrg
VAR

bStart : BOOL;

TON_NR : TON_NR;
END_VAR

// When bStart=TRUE starts the counting
TON_NR(IN := bStart,
PT := T#20S);

// Actions executed at the end of the counting
IF (TON_NR.Q = TRUE) THEN

bStart := FALSE;

END_TF

5.12.5.3. TP_NR

The TP_NR function block works as a trigger and has its functioning and configuration similar to the TP_RET function
block, differentiating only for not being redundant nor retentive.

TP_NR
—IM 0 —
—FT ETH

Figure 153: TP_NR Function Block

Utilization example in ST language:

PROGRAM NonSkippedPrg
VAR

bStart : BOOL;

TP_NR : TP_NR;
END_VAR

// Configure TP_NR

TP_NR(IN := bStart,
PT := T#20S);
bStart := FALSE;

// Actions executed during the counting

IF (TP_NR.Q = TRUE) THEN

// Executes while the counter is activated
ELSE

// Executes when the counter is deactivated
END_TF

254 (¢

[
G

\

5. CONFIGURATION

5.12.6. User Log

Feature that allows the user to create own records and write to log files on the memory card present in the CPU. The files
are generated in a specific directory of the memory card in the CSV format, allowing viewing in text editors and spreadsheets.
The separator was the semicolon character. For more information about the use of the memory card, see section Memory
Card.

There are two functions available, one for log information and another to remove all records. The following is a description
of the types of data used by the functions:

Data type Option Description
USER_LOG_EVENT_ERROR
USER_LOG_EVENT_TYPES USER_LOG_EVENT_DEBUG
USER_LOG_EVENT_INFO
USER_LOG_EVENT_WARN

The user is free to use the best
indication according to log
message severity.

Log message with 150-character
max.

USER_LOG_MESSAGE

The operation was performed suc-
cessfully.

The operation was not performed
successfully. The reason for the
failure can be checked in the system
logs — see section System Log.
Messages are being added beyond
the processing capacity.

At the time, there were no resources
to perform the operation.

There was an error while access-
ing the memory card or there is no
USER_LOG_FILE _SYSTEM_ERROR available space. Error information
can be verified in the logs of system
—see section System Log.

There is a memory card present in
the CPU.

There is no free space available on
the memory card.

The resource is busy executing the
USER_LOG_PROCESSING last operation, for example, deleting
all log files.

USER_LOG_OK

USER_LOG_FAILED

USER_LOG_BUFFER_FULL

USER_LOG_ERROR_CODES USER_LOG_NO_MEMORY

USER_LOG_NO_MEMORY_CARD

USER_LOG_MEMORY_CARD_FULL

Table 194: Data Type for User Log

The following are described the two functions available in the LibLogs library on MasterTool IEC XE. To perform the
procedure of inserting a library, see the MasterTool IEC Programming Manual — MP399609, section Libraries.

The User Logs are available only until version 1.3.0.20 of Nexto Series CPUs. In the same
way to use this feature is necessary version 1.40 or higher of MasterTool IEC XE.

5.12.6.1. UserLogAdd

This function is used to add a new user log message, adding in a new line to the log file on the memory card. The message
must have a maximum length of 150 characters, and the event type of the message. Application variables can be registered
using conversion to string and concatenation with the main message. The date and time information in UTC (timestamp)
is automatically added in the message with a resolution of milliseconds where the event was registered. The date and time
information is also used in the formation of the names of the log files.

255 altus

——

5. CONFIGURATION

The UserLogAdd function can be used to enter multiple messages within a single task and also in different application
tasks. However independent of each execution of the function in the application, being on the same task or on different tasks,
all use the same feature to record the desired messages. For this reason it is recommended that the addition of messages using
the UserLogAdd function in the application be held every 50 ms to prevent the return of buffer overload. If the function is
performed in periods shorter than the indicated, but respect the average time of 50 ms between each message addition at the
end of the interval for the task, also prevents the return of buffer overload. So that the logs are added correctly, it is important
to respect time limits when the card is inserted and at startup of the CPU, mentioned in section Memory Card. After the
operation the function returns the options for the given type USER_LOG_ERROR_CODES as Table 194. When the function
return is not USER_LOG_OK, the message was not registered and the function UserLogAdd should be re-executed with the
desired message. In case of return of consecutive writing failures, the memory card can be damaged. The replacement by a
healthy memory card ensures that the latest logged messages will be recorded on the card that is not damaged, since the CPU
is not restarted.

The figure below represents the function UserLogAdd and table below the input parameters:

UserLogAdd
—byEventType UserLogaddp—
—pszMessage
Figure 154: UserLogAdd Function
Input Parameters Type Description

This variable specifies the event type of
byEventType BYTE the log being added as options for the
USER_LOG_EVENT_TYPES data type.
This variable should contain the set of
characters that compose the message to be
added to the log file. The message must
contain a maximum of 150 characters.

pszMessage USER_LOG_MESSAGE

Table 195: UserLogAdd Input Parameters

The log files are generated and organized on the memory card in a specific directory path depending on the CPU serial
number and the firmware version installed. For example, for a CPU with serial number 445627 and firmware version 1.4.0.4,
the location where the log files should be written to the memory card is MemoryCard/UserLog/445627/1.4.0.4/.

The names of the log files are formed by the date and time (timestamp) of the first message. Except when there’s a problem
to use this name, for example, another existing file with the same name, in this situation it is used the instant date and time. The
file name follows the following pattern: year/month/day/hour/minute/second/millisecond.CSV. In case of file access problem
due to defective sector not enabling to continue writing, will be added to the name of this file the extension “corrupted” and a
new file will be created. The amount of logs per file is not fixed, varying depending on the size of messages. The amount of
created files is limited to 1024 with maximum size of 1 MB each, so the memory card requires 1 GB of free space. When it
reaches the limit of 1024 files created on the memory card, during CPU operation, the oldest files are removed so that files with
latest logs are preserved, even in cases of partial manual removal of the files in the directory where the files are being written.

The viewing of the log files can be performed through worksheets or conventional text editors. The concatenated informa-
tion, for improved visualization, may use semicolons between the strings of the message to separate them. One must be careful
in formatting cells with floating point values.

Utilization example in ST language:

PROGRAM UserPrg
VAR
eLogError : USER_LOG_ERROR_CODES;
sMessage :USER_LOG_MESSAGE;
END_VAR

IF (m_rTemperature > MAX TEMPERATURE_ACCEPT) THEN
)

sMessage := 'Temperature higher than expected: ';
concat (sMessage, REAL_TO_STRING (m_rTemperature)) ;

sMessage

5. CONFIGURATION

sMessage := concat (sMessage, '°');

eLogError := UserLogAdd(USER_LOG_EVENT_WARN, sMessage);
//eLogError variable gets possible function errors.
END_IF

Log file content example: (UserLog-201308271506245738.csv)

Model; NX3008
Serial number; 445627
Firmware version; 1.4.0.4

27/08/2013 15:06:24.5738; WARN; Overtemperature: 25¢
27/08/2013 16:37:45.3476; WARN; Overtemperature: 25¢
28/08/2013 09:10:55.4201; WARN; Overtemperature: 26°

5.12.6.2. UserLogDeleteAll

The UserLogDeleteAll function performs the deletion of log files present in the directory created specifically for the CPU
in which is inserted the memory card, i.e. are only deleted the logs contained in the directory named with the CPU firmware
version that exists within the directory with the CPU serial version. The log files deleted are only files that exist at the time of
memory card mounting and the generated by the UserLogAdd function. Logs of other CPUs and files added manually by the
user during execution are not deleted. The figure below represents the function UserLogDeleteAll.

UserLogDeleteAll
UserLogDeletesll —

Figure 155: UserLogDeleteAll Function

Utilization example in ST language:

PROGRAM UserPrg

VAR

eLogError : USER_LOG_ERROR_CODES;
END_VAR

IF (m_Deletelogs = TRUE) THEN

eLogError := UserLogDeleteAll () ;

m_Deletelogs := FALSE;

//eLogError variable gets possibles function errors.
END_IF

The UserLogDeleteAll function’s return does not indicate operation completed, just confir-
mation of execution that can take a large amount of time if there are hundreds of log files in
the directory. The function to record the new user log is unavailable right now, returning the
USER_LOG _PROCESSING option for any operation. The result of the operation can also
be checked in the system log.

257 (¢

5. CONFIGURATION

5.12.7. ClearRtuDiagnostic

This function isn’t supported by this CPUs’ Series.

5.12.8. ClearEventQueue

The ClearEventQueue function available by the LibRtuStandard library can be used when it’s needed to clear the CPU’s

event queue and of all instanced drivers.

According to table below the function’s execution result is going to be showed in its output variable.

The ClearEventQueue function does not apply to clearing the Event Log (SOE) service
queue, described in section SOE Configuration. The function only clears the event queues
of the drivers configured under the communication interfaces (COMs and NETs) of the CPU.

Name ENUM (UDINT) Result Description
OK_SUCCESS 0 Success
ERROR_FAILED 1 General error
ERROR_NOTSUPPORTED) The called routine is not supported
by the product
ERROR_PARAMETER 3 Invalid/unsupported parameter
ERROR_MODULE_ABSENT 16 The module is absent in the bus
ERROR_MODULE_NOTCONFIGURED 17 The module is not configured in the
application
ERROR_MODULE_NOTRUNNING 18 The mlodule is not running (isn’t in
operational state)
ERROR_MODULE, COMMEFAIL 19 Failure in the communication with
the module
ERROR_MODULE_NOTFOUND 20 The module wasn’t found in appli-

cation or is not supported

Table 196: ClearEventQueue Function Results

Using example in ST language, where the function call is going to clear the events queue, and consequently, reset the

communication drivers events queue usage diagnostics 7_DIAG_DNP_SERVER_1.tClient_*.tQueueDiags.wUsage:

PROGRAM UserPrg

VAR

ClearEventQueueStatus : TYPE_RESULT;
END_VAR
ClearEventQueueStatus := ClearEventQueue () ;

258

Q
=
G

\

5. CONFIGURATION

5.13. SNMP
5.13.1. Introduction

SNMP (Simple Network Management Protocol) is a protocol widely used by network administrators to provide important
information and diagnostic equipment present in a given Ethernet network.

This protocol uses the concept of agent and manager, in which the manager sends read requests or write certain objects
to the agent. Through a MIB (Management Information Base) the manager is aware of existing objects in the agent, and thus
can make requests of these objects, respecting the read permissions or writing the same. MIB is a collection of information
organized hierarchically with each object of this tree is called OID (Object Identifier).

For all equipment with SNMP, it is mandatory to support MIB-IL. In this MIB are described key information for managing
Ethernet networks.

5.13.2. SNMP nas UCPs Nexto

The CPUs of the Nexto Series behave as agents in SNMP communication. The information made available through SNMP
cannot be manipulated or accessed through the user application, requiring an external SNMP manager to perform access. The
table below contains the objects available in the Nexto CPUs. This feature is available after firmware version 1.4.0.33 of
the Nexto Series CPUs supports the protocols SNMPv1, SNMPv2c and SNMPv3, and support the MIB-II, where objects are
described in RFC-1213.

OID Name Description

Contains name, description, location and other equip-

13.6.1.2.1.1 System ment identification information.

Contains information of the machine’s network inter-
faces. The ifTable (OID 1.3.6.1.2.1.2.2) has the indexes 6
1.3.6.1.2.1.2 | Interfaces | and 7 available, which can be viewed by the network in-
terfaces statistics NET 1 and NET 2, respectively, of the
Nexto Series CPUs.

Contains information of the last required connections to

1.3.6.1.2.1.3 At

the agent.
1.3.6.1.2.14 1P Contains statistical connections using IP protocol.
1.3.6.1.2.1.5 ICMP Contains statistical connections using ICMP protocol.
1.3.6.1.2.1.6 TCP Contains statistical connections using TCP protocol.
1.3.6.1.2.1.7 UDP Contains statistical connections using UDP protocol.

1.3.6.1.2.1.11 SNMP Contains statistical connections using SNMP protocol.

Table 197: MIB II Objects — Nexto Series SNMP Agent

By default, the SNMP agent is activated, i.e., the service is initialized at the time the CPU is started. The access to the
agent information is via the Ethernet interfaces of the Nexto Series CPUs on UDP port 161. So when the service is active,
the agent information can be accessed through any one of the Ethernet interfaces available. It is not possible to provide agent
information through Ethernet interfaces NX5000 modules. In figure below an example is shown SNMP manager, in which
some values are read.

5. CONFIGURATION

&7 PowerSNMP Free Manage

File Discover Watch Tools Help

PowerSNMP Free Manager

-8, Discovered Devices Agent Address Vaniable (Oid) Value =R
B b :Eﬁ;r‘;ﬂtﬁss Variable Watches = m!g dod
£ SNMPy V3 19216219226 sysDeser (1.36.1.21.1.1) CPU NX3030 S 1intemet
£ SNMPy2 v3_192 16819 226 syshlame (13612115 nexto-default " 1 diectory
=23 SNMPv3 v3_192 16819 226 sysContact (136.12114) who@whers &

i v3 19216819 2 v3_192.168.13.226 samplnPkts {136121111) 072 & 3 epenmental
v3_192.168.19.226 snmpOutPkis (13.61.21.112) 2952 4 private
v3_192.168.19.226 pinReceives (1.3.6.1.21.4.3) 1128746 :z:;“p"\?;
v3_192.168.19.226 pinDelivers (1.3.6.1.2.1.4.9) 1015910
v3_192168.19.226 PpinReceives (1.3.6.1.21.4.3) 1128679
V3 19216219226 ipOutRequests (1.36.1.21.4.10) 53509
v3_192 16819 226 topOutSegs (1361216.11) 597
v3_192 16819 226 udplnDatagrams (13612171 173537

<

Traps | Log

Time Originator Enterprise/01D Genenic Trap Specific Trap

Figure 156: SNMP Manager Example

For SNMPv3, in which there is user authentication and password to requests via SNMP protocol, is provided a standard
user described in the User and SNMP Communities section.

If you want to disable the service, change the SNMPv3 user or communities for SNMPv1 / v2c predefined, you must access
the System Web Page of the CPU. For details, see the SNMP Configuration section.

5.13.3. Private MIB

The Private MIB has been discontinued since June 2019.

5.13.4. SNMP Configuration

SNMP settings can be changed through the System Web Page, in the CPU Management tab in the SNMP menu. After
successful login, the current state of the service (enabled or disabled) as well as the user information SNMPv3 and communities
for SNMPv1 / v2c can be viewed.

The user can enable or disable the service via a checkbox at the top of the screen.

It’s also possible to change the SNMPv3 information by clicking the Change button just below the user information. Will
open a form where you must complete the old username and password, and the new username and password. The other user
information SNMPv3 cannot be changed.

To change the data of SNMPv1/v2c communities, the process is similar, just click the Change button below the information
community. A new screen will open where the new data to the rocommunity and rwcommunity fields will be inserted. If you
fail any of the fields blank, their community will be disabled. That way, if the user leaves the two fields blank, access to the
SNMP agent will only be possible through SNMPv3.

If the user wants to return to the default settings, it must be manually reconfigure the same according to the User and
SNMP Communities section. Therefore, all current SNMP configurations will be kept in the firmware update process. These
options are shown in figure below.

260

Q
=
G

\

5. CONFIGURATION

English | Espafiol | Portugués

———)
CPU Overview System Overview CPU Management

Firmware Update SNMP

Change password

Figure 157: SNMP Login screen

After successful login, the current state of the service (enabled or disabled) as well as the user information SNMPv3 and
communities for SNMPv1 / v2c can be viewed.

English | Espafiol | Portugués

A—
CPU Overview System Overview CPU Management

SNMPv3 User
Type rwuser

administrator
Authentication Protocol MD5
Password administrator

Privacy Protocol

Privacy Password

Communities

Figure 158: SNMP status configuration screen

The Username and Password to access the agent via SNMP protocol are the same used to
login on the SNMP Settings web page.

261

\

©
=
G

5. CONFIGURATION

5.13.5. User and SNMP Communities

To access the SNMPv1 / v2c of the Nexto Series CPUs, there are two communities, according to table below.

Communities Default String Type
rocommunity Public Only read
rwcommunity Private Read and Write

Table 198: SNMPv1/v2c Default Communities info

It’s possible to access SNMPv3 using default user, see table below:

Authentication| Privacy Pro- | Privacy Pass-
Username e Password
Typ Protocol tocol word
administrator rwuser MD5 administrator - -

Table 199: SNMPv3 Default User info

For all settings of communities, user and password, some limits must be respected, as described on the following table:

.Conﬁgurable Mlmmum Max Size Allowed Characters
item Size

rocommunity | - 30 [0-9][a-z][A-Z]@Q$*_.
rwcommunity | - 30 [0-9][a-z][A-Z]@Q$*_.
V3 User - 30 [0-9][a-z][A-Z]Q$*_.
V3 Password 8 30 [0-9][a-z][A-Z]Q$*_.

Table 200: SNMP settings limits
262

altus

6. REDUNDANCY WITH NX3030 CPU

6. Redundancy with NX3030 CPU

6.1. Introduction

This chapter describes the Nexto Series CPUs redundancy which can only be used with the NX3030 CPU.

Nexto’s redundancy is of the hot-standby type, thus, the controllers are doubled. One controller is normally in active state
and controlling a process, while the other is normally in stand-by state, keeping the synchronism with the active controller. In
case of a failure in the active controller damaging its process control, the stand-by controller switches automatically to Active,
within a very short time, in order not to disturb the process and cause any discontinuities in its outputs.

The hot-standby redundancy is a method used to increase failure tolerance and, consequently, increase the availability of
automation systems. The basic idea is to ensure that no simple failure in duplicated components causes the process control
interruption.

The hot-standby redundancy is applied on:

= Qil exploration platforms

= Energy generation and distribution plants

= Security interlock (Instrumented Security Systems)

= Continuous processes such as chemical plants, oil refinery, paper production, etc.

In the Nexto Series CPUs hot-standby redundancy, as it has already been described, the controllers are doubled. Besides,
the field buses (PROFIBUS-DP) can also, optionally, be doubled, as well as the Ethernet supervisory networks and the Ethernet
HSDN (High Speed Deterministic Network) control networks. By choosing the networks duplication, the availability becomes
even higher.

The Nexto Series CPUs hot-standby redundancy is not applied to I/O modules. In case the I/O module redundancy is
desired, it can be treated by the user in the application level. For instance, the user can duplicate or even triplicate an analog
input module and create a vote scheme to define which input will be considered in an application specific time.

The figure below shows a typical example of redundant architecture using the NX3030 CPU.

The redundant CPU central part is formed by two identical racks, called PLCA and PLCB, and a redundancy control panel
(PX2612). In the redundancy context, each rack (PLCA or PLCB) is called half-cluster, while the group formed by these two
racks is called cluster.

In this example, a PROFIBUS network, Ethernet supervision network and Ethernet HSDN control network duplication can
also be observed.

263

6. REDUNDANCY WITH NX3030 CPU

I_ I_ SCADAS I_

MasterToaol
|
| Ethemat & I I
Ethemeat 8
l=m channel NETA
COrther CPUs
{redundants
or not)

N N M N M
K X K X x
5 5 5 5 5
o O o a O
o o i} a o
1 1 i] a]

1 t

PLCA PLCE
(hait-cluster) FROFIBUS 1 4 (MaT-clusier)
PROFIBUS 1B
Hon-redundant Etemiet
Ethemist HSDMN A
Ethesmist HSDM B
Cther HEDM
CPUs
(mormally
redundants}

POEDEIVE POSDEIVE Pontp Serles VO modules

Remote Pomin Seres 110 with
PROFIBUS Regundarn

POE063VE POSDIEINVS Ponio Senes 'O modules H’r

AL-pazz |Mon-recundart PROFIBUS network Wia AL-2433

1 0 O

Non-regundant PROFIBUS slaves

Figure 159: Example of redundant architecture with NX3030 CPU

6.2. Technical Description and Configuration

6.2.1. Minimum Configuration of a Redundant CPU (Not Using PX2612 Panel)
A redundant CPU is composed, at least, by:
= Two identical half-clusters

Each half-cluster consists of at least the following modules:

264

Q

\

(S

6. REDUNDANCY WITH NX3030 CPU

» The rack itself where the modules are inserted, which can be one of the following:
¢ NX9000, with 8 positions
* NX9001, with 12 positions
* NX9002, with 16 positions
* NX9003, with 24 positions

= The power supply NX8000, at rack positions 0 and 1
= The NX3030 CPU, at rack positions 2 and 3
» The module NX4010, at rack positions 4 and 5

The figure below shows an example of a redundant CPU minimum configuration, using the smallest rack (NX9001, with

12 positions). In this case, it can be observed that the three modules inserted in the rack have double width (occupy two rack
positions).

Synchonism channel NETA (AL-2319)

Synchonism channel NETB (AL-2319)

01 23 45 678 91011 01 23 45 678 91011
N N N N N N
X X X X X X
8 3 4 8 3 4
.‘_
o lols cluster —» ol el
0 3 1 0 3 1
0 0 0 0 0 0
rack NX9001 rack NX9001

half-cluster PLCA half-cluster PLCB

Figure 160: Minimum configuration of a redundant CPU in rack NX9001

6.2.2. Typical Configurations of a Redundant CPU

A minimum configuration, as the one shown on Figure 160, may already work as “redundant processing unit”. It would
be possible to use the serial and Ethernet communication channels from NX3030 CPU, for instance, for MODBUS TCP
communication with a SCADA system, and MODBUS RTU and/or MODBUS TCP communication with smart field devices
or MODBUS remote I/O systems.

In typical configurations, however, additional modules are inserted in the PLCA and PLCB half-clusters, for instance, to
deliver a remote PROFIBUS I/O and Ethernet additional channels.

Among the additional modules which, optionally, may be inserted in the half-clusters, are the following:

= PROFIBUS Masters NX5001
= Ethernet Interfaces NX5000

In case is necessary, bigger racks can be used, as the NX9002 (16 positions) and NX9003 (24 positions). It must be
observed that all the listed modules, so far in this chapter, have double width (occupy two positions). Additionally, it’s also
possible to use the PX2612 panel, which allows the execution of some redundant state machine transitions that, otherwise,
wouldn’t be possible, in addition to the automatic half-clusters shutdown in failure situations.

265

]
=
G

\

6. REDUNDANCY WITH NX3030 CPU

6.2.2.1. NX5001 Modules Addition for PROFIBUS Networks

A redundant PLC is up to until four NX5001 modules for PROFIBUS networks usage. Each network can be single or
redundant. In case the PROFIBUS “n” (being “n” a number between 1 and 4) be redundant, the two networks that belongs to
this are named PROFIBUS “n” A and PROFIBUS “n” B. In case the PROFIBUS “n” be single, the network that belongs to it
will be named PROFIBUS “n” A.

To create a redundant PROFIBUS network, must be inserted two NX5001 modules in each half-cluster. To create a simple
PROFIBUS network, simply insert a NX5001 module in each half-cluster. Thus, it can be configured up to four simple
networks, or two redundant networks, or a redundant and two simple. In other cases, fewer than four NX5001 modules
will be needed in each half-cluster. More information about PROFIBUS networks is provided in the PROFIBUS Network
Configuration section.

In Figure 159, there is only one PROFIBUS network (PROFIBUS 1), and the same is redundant (PROFIBUS 1 A and
PROFIBUS 1 B). In this example, therefore, were inserted two NX5001 modules in each half-cluster.

6.2.2.2. NX5000 Modules Addition for Ethernet Networks

It’s possible to insert up to six NX5000 modules in each half-cluster, delivering six additional Ethernet channels, besides
the two Ethernet channels already existent in the NX3030 CPU.

The Ethernet channels can be used in an individual way, or organized in NIC Teaming pairs, which are used to deliver
redundant Ethernet channels, and are described, with more details, in the Redundant Ethernet Networks with NIC Teaming
section.

A typical application for the NX5000 module can be the construction of a redundant HSDN (High Speed Deterministic
Network), for the communication between several redundant CPUs. Through this network, many redundant CPUs can ex-
change messages in a totally segregated network, in order to guarantee determinism and a fast communication. Furthermore,
configuring this network as redundant with NIC Teaming pairs, an excellent availability may be reached. In order to build such
network (redundant HSDN), two NX5000 modules must be inserted in each half-cluster. Figure 159 shows a redundant HSDN
example using two NX5000 modules in each half-cluster.

Applications where input and output modules are connected to Ethernet networks may require extra interface modules
NX5000 to connect to these networks. In these cases, the network that connects the modules of inputs and outputs can be a
simple or redundant network. Furthermore, the interfaces can be configured with the option of generating life failure. In this
case, a network failure will cause a switch-over.

Figure 159 also shows an example with a NX5000 module used in the isolated form (without NIC Teaming redundancy),
inserted at the right side from the other modules in each rack.

6.2.3. NX4010 Module

The NX4010 model, as shows figure below, was conceived in order to provide the interconnection between the two PLCA
and PLCB half-clusters, and also to connect these half-clusters to the redundancy control panel PX2612. For further infor-
mation regarding this module connections, see Interconnections between Half-Clusters and the Redundancy Control Panel
PX2612.

6. REDUNDANCY WITH NX3030 CPU

NX4010

Figure 161: NX4010

6.2.3.1. NX4010 Features
Its main features are:

= Data and application synchronization between two half-clusters

= Redundant communication interface between two half-clusters

= Automatic switchover (active half-cluster change) in case of NX4010 and CPU communication time-out
= Possibility to switch off the other half-cluster

= One Touch Diag

= Electronic Tag on Display

= Display and LEDs for diagnostics indication

Other features (generals, electrical, mechanic and environment) are presented in the NX4010 Redundancy Module Techni-
cal Characteristics - CE114900.

6.2.4. Redundancy Control Panel PX2612

The PX2612 control panel is an optional item in a redundant system. It must be used when the ‘redundancy with panel’
option is selected during the project creation using the wizard. Figure 162 shows the redundancy control panel, while Figure
163 shows the frontal panel with details.

Through the DB9 connector called CONTROL PLC A, the connection with the CONTROL connector from PLCA NX4010
is made, using the AL-2317/A cable.

Through the DB9 connector called CONTROL PLC B, the connection with the CONTROL connector from PLCB NX4010
is made, using the AL-2317/B cable.

Furthermore, there’s a connector with 5 male terminals:

= GND: terminal for ground connection.

= RL A: 2 terminals connected to a relay NO (normally open) contacts, which can be commanded by PLCB to switch off
PLCA. This relay must be closed by PLCB in order to switch off PLCA.

= RL B: 2 terminals connected to a relay NO (normally open) contacts, which can be commanded by PLCA to switch off
PLCB. This relay must be closed by PLCA in order to switch off PLCB.

267

Q
=
G

\

6. REDUNDANCY WITH NX3030 CPU

A CPU (PLCA or PLCB) can turn off the other CPU (PLCB or PLCA) in some exceptional situations, using the NO relays
in the RLA and RLB connectors. Such situations are described in the Transition between Redundancy States section.

The PX2612 has also 6 buttons for redundancy command and 6 LEDs used for redundancy state indication. Each CPU
reads 3 from these 6 buttons and controls 3 LEDs.

For further information regarding these buttons and LEDs functions, see PX2612 Redundancy Command Panel Functions
section.

Figure 162: Redundancy Control Panel PX2612

Figure 163: Redundancy Control Panel PX2612 Frontal View

6.2.4.1. PX2612 Features

The redundancy control panel PX2612 has the following features:

CONTROL PLC A: connection to the module NX4010 from PLCA
CONTROL PLC B: connection to the module NX4010 from PLCB
RL A: relay NO terminals used to switch off PLCA
RL B: relay NO terminals used to switch off PLCB

268 altus

6. REDUNDANCY WITH NX3030 CPU

= GND: grounding

Other features (generals, electrical, mechanic and environment) are presented in the Redundancy Control Panel PX2612
Technical Characteristics - CT112500.

6.2.5. Interconnections between Half-Clusters and the Redundancy Control Panel PX2612

The figure below shows how the connections between PLCA, PLCB and PX2612 have to be made, including the possibility
to allow a CPU to switch off the other, which is necessary in exceptional situations.

Two AL-2319 cables must be used for the synchronism and redundancy channels NETA and NETB. One of these two cables
interconnects the NX4010 NET 1 connector from each CPU (NETA channel). The other cable interconnects the NX4010 NET
2 connector from each CPU (NETB channel).

An AL-2317/A cable interconnects the NX4010 CONTROL connector from the PLCA to the PX2612 CONTROL PLC A.
An AL-2317/B cable interconnects the NX4010 CONTROL connector from the PLCB to the PX2612 CONTROL PLC B.

Besides this, it’s necessary to build a special power supply circuit in order to allow a CPU to switch off the other in extreme
cases.

For higher reliability, two separate 24 V power supplies must be used, one for PLCA supply and other for PLCB supply.

It can be observed that is necessary to use two external relays from the normally closed type (NC), with current capacity
to feed the NX8000. These relays must be dimensioned for a nominal current around 2 A, however, a current inrush of around
10 A must be taken into account. Shunt diodes connected to the NC relays solenoids must be used to protect the PX2612 NO
relay contacts.

AL-2319 (NETA)

AL-2319 (NETB)

half-cluster PLCA half-cluster PLCB ;
'

MET1 NET2 " MET1 NET2 "

NX8000 NX3030 NX4010 NX8000 NX3030 NX4010

24V ow CONTROL 24V v CONTROL
y I y

AL-231T7/A
AL-2317/B
CONTROLCP A CONTROLCPE
PX2612
M2 A

24V ov 24V ow
PLCA power Supply PLCB power Supply

Figure 164: Interconnections between PLCA, PLCB and PX2612

269

]
=
G

\

6. REDUNDANCY WITH NX3030 CPU

6.2.6. General Characteristics of a Redundant CP

Redundant CPU General Features

Allowed CPUs

NX3030

Redundancy type

Hot-standby

Failure tolerances

Tolerates, at least, simple failures in doubled equipment in
the half-clusters. In specific cases, it can tolerate multiple
failures.

Half-cluster 5 redundancy
states

- Not-configured: initial state, also considered when the
CPU is off or isn’t executing the MainTask.

- Starting: temporary state assumed after Not-configured,
where some tests will define the next state (Inactive, Active,
Stand-by or back to Not-configured.

- Inactive: state reached after some types of failures or for
programming maintenance.

- Active: controlling the user process.

- Stand-by: ready to switch to Active and control the user
process, in case there’s such demand (e.g. Active CPU fail-
ure).

Main failures which cause
switchover between the Active
CPU and the Reserve CPU.
The reserve CPU switches for
the Active and the Active
can go to Inactive or Not-
configured.

- Supplying failure.

- Power supply.

- CPU (stop in the MainTask execution).

- NX4010.

- Failure in both synchronism channels (NETA and NETB)
and the cause isn’t in the Reserve CPU. In this case the Re-
serve CPU, besides assuming the Active state, switches the
other CPU off.

- Failure of some synchronism channel (NETA and NETB)
and the cause is in the Active CPU.

- Failure in some vital PROFIBUS network.

- Failure in some vital Ethernet network.

Commands that cause
switchover between the
Active CPU and the Reserve
CPU

- Commands via redundancy control panel (PX2612).

- Commands received from MasterTool or from a SCADA
system, through this CPU (local) or the other CPU (remote).
- Commands generated by user application (e.g.: in case
of other diagnostics as Ethernet communication failure)
through this CPU (local) or the other CPU (remote).

Main failures which prevents
a CPU to go to the reserve
state or remain in it. Such
failures drive the CPU to a
Not—Configured or Inactive
state.

- Supplying failure.

- Power supply.

- CPU (stop in the MainTask execution).

- NX4010.

- Failure in both synchronism channels (NETA and NETB)
and the cause is in the Reserve CPU.

- Failure in the synchronism service for redundancy data.

- Failure in the synchronism service for the redundant forc-
ing list.

- Total failure in some vital PROFIBUS network.

- Total failure in some vital Ethernet network.

- Different project from the Active CPU, with project auto-
matic synchronization enabled.

- Firmware version incompatible with the Active CPU.

270

altus

6. REDUNDANCY WITH NX3030 CPU

Redundant CPU General Features

Commands that drive the
CPU out of the reserve state

- Commands via redundancy control panel (PX2612).

- Commands received from MasterTool or from a SCADA
system, through this CPU (local) or the other CPU (remote).
- Commands generated by user application (e.g.: in case
of other diagnostics as Ethernet communication failure)
through this CPU (local) or the other CPU (remote).

Switchover time

- Up to 3 cycles from the MainTask, depending on the stim-
ulus for state change (command or failure).

- In case of PROFIBUS network failure, 2 MainTask cycles
+ 500 ms.

No discontinuities switchover
(bump-less)

- A switchover doesn’t cause discontinuities in the controller
outputs, nor in the inner variables.

Redundancy overhead (Main-
Task cycle CPU consuming in-
creased by redundancy)

- Maximum value automatically calculated by MasterTool
and informed to the user, considering an empty redundant
forcing list.

- Typical average value of 60 ms for 224 kbytes of redundant
data, in a system with a redundant PROFIBUS network and
two redundant Ethernet HSDN networks

CPU display

Among other diagnostics, shows the redundancy state (Ac-
tive, Stand-by, Inactive, Not-configured and Starting) to-
gether with the CPU identification PLCA or PLCB.

Redundancy Control Panel
PX2612

- Through buttons, allows commands of switchover or re-
dundancy states transition for maintenance.

- LEDs signalize the redundancy state in each half-cluster.

- NO relay allows a half-cluster to switch off the other in
extreme situations. A button allows the other half-cluster
reactivating.

- Embedded resources for buttons, LEDs and relays tests.

- A project created with panel cannot be converted to a
project without panel, and vice-versa.

Redundancy diagnostics

- Indicate failures in the PLCA and in the PLCB, indepen-
dent of their states (Active or Inactive).

- Prevent “obscure failures”.

- Allow quick maintenance, essential for high availability.

Redundancy commands

- Allow the execution of the same PX2612 control panel ac-
tions, among other commands (e.g. switchover command).
- Can be executed in the local CPU, or transmitted to
the other CPU (remote) via synchronism channels NE-
TA/NETB.

- Can be received through MasterTool or a SCADA system.
- Can be executed through user application.

Redundancy events

Register diagnostics and redundancy commands changes,
with timestamp, allowing an investigation of the switchover
causes.

SNTP (Simple Network Time
Protocol)

Allow the events to have a precise timestamp adjusted to the
world hour. It also synchronizes the CPU real time clock for
other applications.

Commands and diagnostics
synchronization

Each MainTask cycle, PLCA and PLCB exchange diagnos-
tics and commands through synchronism channels NETA or
NETB. This way, a CPU knows the other diagnostics and
commands.

271

altus

6. REDUNDANCY WITH NX3030 CPU

Redundant CPU General Features

Redundant data synchroniza-
tion

Each MainTask cycle, the Active CPU copies redundant data
to the Inactive CPU through the synchronism channels NETA
and NETB. Non-redundant data are not synchronized.

Redundant forcing list syn-
chronization

Each MainTask cycle, the Active CPU copies the redundant
forcing list to the Inactive CPU through the synchronism
channels NETA and NETB. This list includes only forced
redundant variables, this way PLCA and PLCB can have dif-
ferent non-redundant data groups forced, as these variables
are not synchronized.

Single project for PLCA and
PLCB

There’s a single project for the PLCA and PLCB, generated
by MasterTool. The project is composed by the applica-
tion project (executable code) and the archive project (source
code).

CPU identification

Through MasterTool, a NX3030 CPU identifies itself as
PLCA, PLCB or non-redundant CPU. This identification
isn’t part of the application project generated by MasterTool,
even though is written in a CPU using MasterTool. The CPU
identification allows the feature of a single project for PLCA
and PLCB.

Automatic project synchro-
nization

If the Active CPU project becomes different from the Inac-
tive CPU, it is copied from the first to the second. This syn-
chronization can take several MainTask cycles. One must
remember the project is composed by the application project
(executable code) and the archive project (source code), and
both are synchronized. This synchronization can be disabled
in special cases in order to allow visualization of project
modifications which can only be downloaded offline in non-
redundant CPUs.

Online expansion of modules
and PROFIBUS remotes

There are project modifications that can’t be done online in
a non-redundant CPU, such as the inclusion of new modules
or PROFIBUS remotes. However, using the CPU and the
PROFIBUS network redundancy, it was defined a procedure
to accomplish this goal, very important for systems which
need high availability.

Private IP addresses for
PLCA and PLCB

It’s possible to connect to a specific CPU (PLCA or PLCB)
using a private IP address, to obtain half-cluster specific di-
agnostics, for instance. The PLCA IP address will always be
associated to the PLCA NET(i) interface, while the PLCB IP
address will always be associated to the PLCB NET(i) inter-
face.

Active IP

Name of a strategy that allows the Ethernet client connect to
a server from the redundant CPU using always the same IP
address. This prevents the necessity of complex scripts to
change the IP address when switchovers occur due to redun-
dancy. The Active IP address will always be associated to the
NET() interface from the Active CPU.

NIC Teaming

Name of the strategy which allows two Ethernet interfaces
from a half-cluster to form a redundant pair sharing a same
IP address. This way, redundant Ethernet network can be
built easily, without the need for the clients, connected to
a NIC Teaming, to implement complex scripts to switch IP
addresses.

272

altus

6. REDUNDANCY WITH NX3030 CPU

Redundant CPU General Features

PROFIBUS Network and Vi-
tal Failures Configuration

The CPU supports up to 4 simple PROFIBUS networks or
up to 2 redundant PROFIBUS networks. It’s also possible to
configure if each PROFIBUS network failure is considered
vital (causes switchover) or not.

Ethernet Network and Vital
Failures Configuration

The CPU supports up to 8 simple Ethernet networks or up
to 4 redundant Ethernet networks (considering the NX3030
front interfaces). It’s also possible to configure if each Eth-
ernet network failure is considered vital (causes switchover)
or not.

Single and cyclic user task

Only one user task is allowed, called MainTask. This task is
cyclic.

Main POU programs: Non-
SkippedPrg and ActivePrg

At a redundant project creation, MasterTool generates auto-
matically two empty POU programs, which must be filled
by the user:

- NonSkippedPrg: this POU is executed in both CPUs
(PLCA and PLCB), independent on the redundancy state
(Active or Inactive). It’s used for diagnostics and special
commands management.

- ActivePrg: this POU is executed only in the Active CPU
and is used for the final user’s process control.

Table 201: General features of a redundant CPU

6.2.7. Purchase Data

The minimum configuration for a redundant CPU implies on the purchase of the following modules:

Two racks, which must be chosen between the four available models according to the modules to be installed:

e NX9000: 8 positions (4 double modules)

e NX9001: 12 positions (6 double modules)
* NX9002: 16 positions (8 double modules)
* NX9003: 24 positions (12 double modules)

Two NX8000
Two NX3030
Two NX4010
Two AL-2319

Furthermore, it may be necessary to purchase the following additional modules:

One PX2612
One AL-2317/A
One AL-2317/B

Two modules NX5001 for each simple PROFIBUS network

Four modules NX5001 for each redundant PROFIBUS network

Two modules NX5000 for each additional simple Ethernet network

Four modules NX5000 for each additional redundant Ethernet network (NIC Teaming)

It can be installed up to 4 PROFIBUS modules in each half-cluster. This means that we can
configure up to 4 simple PROFIBUS networks or up to 2 redundant PROFIBUS networks.

273

Q
=
G

\

6. REDUNDANCY WITH NX3030 CPU

6.3. Principles of Operation

In this section, the redundant CPU functions using a NX3030 CPU is described, along with its behavior and states. It’s also
presented concepts and programming and configuration restrictions that will be used in the next sections.
6.3.1. Identification of an NX3030 CPU

A NX3030 CPU has a non-volatile identification register where it’s possible for it to be identified as:

= Non-redundant: it can’t be used in a redundant CPU (default configuration)
» PLCA: used in the redundant CPU PLCA
= PLCB: used in the redundant CPU PLCB

The identification register can be adjusted using the MasterTool programmer. The first thing to be done in a NX3030 CPU,
before downloading the redundant project in it, is to identify it as PLCA or PLCB. In case the identification isn’t executed,
several redundancy features won’t work correctly, as, for instance, the synchronization of the application between the PLCs.

The CPU identification register is not part of the redundant CPU project, thus it isn’t saved
as part of this project in the computer where MasterTool is being executed. The register is
saved only in the non-volatile CPU memory.

6.3.2. Single Redundant Project
Due to the identification register previously described, there’s a single project for the redundant CPU, identical for both
PLCA and PLCB.

Configuration parameters that must be different for PLCA and PLCB (e.g. Ethernet interface IP address) appear doubled
in the redundant CPU project (one for the PLCA and another for the PLCB). Each CPU will consider the correspondent one,
after analyzing its identification register.

6.3.3. Redundant Project Structure
6.3.3.1. Redundancy Template

A redundant CPU project is created automatically from a model, called Redundancy Template.

The template starts from the minimum redundant CPU configuration, as defined in the Minimum Configuration of a
Redundant CPU (Not Using PX2612 Panel) section. Besides this, some dialogs with the user are made for the insertion of
additional modules in the half-clusters, such as PROFIBUS masters (NX5001) and Ethernet modules (NX5000).

PROFIBUS remotes must be inserted by the user, below the NX5001 PROFIBUS masters already inserted.
Furthermore, tasks and basic POUs from the program type are created, as described in the following sections.

6.3.3.2. Single and Cyclic Task MainTask

The redundant CPU project has a single task, called MainTask, which is cyclic. The user can adjust the task cycle time.

6.3.3.3. MainPrg Program

The MainTask is connected to a single POU from the program type, called MainPrg. The MainPrg program is created
automatically.

The MainPrg code is the following, in ST language:

SpecialVariablesPrg();

IF isFirstCycle THEN
StartPrg();
isFirstCycle := FALSE;

ELSE
fbRedundancyManagement () ;

274

Q
=
G

\

6. REDUNDANCY WITH NX3030 CPU

IF fbRedundancyManagement .m_ fbDiagnosticsLocal.eRedState = REDUNDANCY_ STATE.
ACTIVE THEN
SpecialVariablesRedundantPrg() ;
END_IF;
NonSkippedPrg() ;

IF fbRedundancyManagement.m_ fbDiagnosticsLocal.eRedState REDUNDANCY_STATE.
ACTIVE THEN

ActivePrg () ;
END_TF;

END_IF;

MainPrg call two POUs from the program type, called NonSkippedPrg and ActivePrg. NonSkippedPrg is always called,
as it’s executed in both CPUs. On the other hand, ActivePrg is only called when the “RedDgnLoc.sGeneral.Diag.eRedState =
Active” condition is true, in other words, when the CPU is in active state.

However, the NonSkippedPrg program is executed in both CPUs (PLCA and PLCB) independent on the redundancy state
of this CPU. On the other hand, the ActivePrg is executed only in the active CPU.

Opposite to the MainPrg, which must not be modified, the user may modify the NonSkippedPrg and ActivePrg programs.
Initially, when the redundant project is created from the Redundancy Template, these two programs are created “empty”, but
after that the user may insert his code.

When the OPC option is enabled when creating the project, the NonSkippedPrg program is
not created empty. For more information, refer to the OPC DA Communication Use with
Redundant Projects section.

6.3.3.4. ActivePrg Program

The main goal of this program, which is executed only in the active CPU, is to control the final user process.

This program normally acts on the redundant variables, among which the direct representation variables are found %I and
%Q associated to the remote I/O system. For further information see the section Redundant CPU Programming - MainTask
Configuration - ActivePrg Program.

The compilation being successful or not, MasterTool informs the calculated looseness and
the redundancy overhead predicted on the message window.

6.3.3.5. NonSkippedPrg Program

This program is executed in both CPUs (PLCA and PLCB) independent on the redundancy state. It’s typically used for
functions such as:

= To organize non-redundant diagnostics to report to a SCADA system.
= To receive and execute non-redundant commands from a SCADA system.

= To manage switchover conditions normally not automatically contemplated by the redundant CPU, that can vary from
user to user. E.g. a user will be able to execute a switchover to the Reserve CPU if the Active CPU isn’t communicating
with the SCADA system, while another user may not want a switchover on this situation.

= To enable or disable I/O drivers according to the redundancy state, e.g. disable a Modbus RS-485 master in the Inactive
CPU.

= To detect failures in I/O drivers in an inactive CPU, in order to avoid obscure failures. Some I/O drivers don’t include
such failures automatically detection, while others, such as the PROFIBUS, does it automatically.

= Other activities which, for some reason, need to be executed either in the Active CPU and the Reserve CPU.

For further information see Redundant CPU Programming - MainTask Configuration - NonSkippedPrg Program section.

275 altus

——

6. REDUNDANCY WITH NX3030 CPU

6.3.3.6. Redundant and Non-redundant Variables

The redundant CPU variables can be classified among redundant and non-redundant. Redundant variables are copied from
the Active CPU to the Inactive CPU, at the MainTask beginning of each cycle, through the synchronism channels NETA and
NETB. On the other hand, non-redundant variables aren’t copied between half-clusters, thus can have different values in PLCA
and PLCB.

The non-redundant variables are used to store private information of each half-cluster (PLCA or PLCB), such as module
diagnostics inside the half-cluster, including the redundancy diagnostics (half-cluster diagnostics state, etc...).

The redundant variables regard the shared information connected to the process control. The variables associated to the
I/0 modules are typical examples of redundant variables.

6.3.3.7. Redundant and Non-redundant %1 Variables

The NX3030 CPU allocates 96 kbytes of %I variables (%IBO ... %1B98303).

The first 80 kbytes can be redundant (%IBO0 ... %IB81919). The last 16 kbytes are always non-redundant (%1B81920 ...
%1B98303).

The 80 kbytes area which can be redundant is allocated for inputs, which can be read from an I/O remote module
(PROFIBUS, MODBUS, etc...).

The 16 kbytes non-redundant area is allocated for a half-cluster “quick private diagnostics”, and also for the redundancy
command panel PX2612 buttons. Quick diagnostics are the ones that must be updated each MainTask cycle.

The user may configure the redundant %I variables quantity, between 0 and 81920 kbytes, in 1 kbyte multiples (the default
value is 16384 bytes - %IBO ... %IB16383). The proper configuration of redundant %I from %IB0 is important to decrease
the necessary time for redundant variables synchronization (decrease the redundancy overhead). E.g. if the real application
allocates only %IBO ... %IB1499 for redundant inputs, the redundant %I area size can be defined as 1500 bytes.

The figure below illustrates the redundant and non-redundant %I direct representation variables allocation, where RI is the
%I quantity really configured as redundant.

B A N
%l really RI kbytes
redundant RI=0..80
Rl default = 16
N_
A
80 kbytes
Reserved for
redundant %l 80-RI kbytes
expansion
Yo N
i Fi
16 kbytes %l non
W Wy redundant W

e o o -

Figure 165: Redundant and Non-redundant %I Allocation

6.3.3.8. Redundant and Non-redundant % Q Variables

The NX3030 CPU allocates 96 kbytes of %Q variables (%QBO0 ... %QB98303). The first 80 kbytes can be redundant
(%QBO ... %QB81919). The last 16 kbytes are always non-redundant (%QB81920 ... %QB98303).

The 80 kbytes area which can be redundant is divided in two sections:

= The first kbytes are reserved for outputs that can be redundant, and are typically allocated for an I/O remote system

(PROFIBUS, MODBUS, etc.). The size value is configurable and its default value is 16384. By default, this section
includes %QBO ... %QB16383, and can be configured for up to 64 kbytes (%QBO ... %QB65535).

6. REDUNDANCY WITH NX3030 CPU

= The next bytes are reserved for diagnostics which can be redundant, from the I/O system (I/O modules diagnostics,
communication interfaces diagnostics, PROFIBUS slaves diagnostics, etc.), for instance. Different from the quick diag-
nostics (allocated in %I), such diagnostics allocated in %Q can take more than one MainTask cycle to be updated. By
default this section includes 16 kbytes (%QB65536 ... %QB81919).

The non-redundant area (%QB81920 ... %QB98303) is typically allocated for diagnostics and private commands of a
half-cluster, and also for the redundancy command panel PX2612 LEDs and relay.

The user can reduce the redundant %Q variable quantity in each one of the sections which can be redundant:

= On the first section, the really redundant area size can be configured between 0 bytes and 65535 bytes, in 1 byte multiples
(the default value is 16384 bytes). The proper configuration of redundant %Q is important to decrease the necessary
time for redundant variables synchronization (decrease the redundancy overhead). E.g. if the real application allocates
only %QO0 ... %Q1499 for redundant outputs, the redundant %Q area size can be defined as 1500 bytes.

= On the second section, the really redundant area size can be configured between 0 bytes and 81919 bytes, in 1 byte
multiples (the default value is 16384 bytes). The proper configuration of redundant %Q is important to decrease the
necessary time for redundant variables synchronization (decrease the redundancy overhead). E.g. if the real application
allocates only %QB65536 ... %2QB66999 for redundant diagnostics, the redundant %Q area size can be defined as 1464
bytes.

The figure below illustrates the redundant and non-redundant %Q direct representation variables allocation, where RQS is
the %Q output quantity configured as redundant in the first section, and RQD is the %Q diagnostics quantity configured as
redundant in the second section.

e’ Geatt ettt _ _——
RQS kbytes
%Q redundant
outputs | |RQS=0...65535
RQS default = 16384
65 kbytes
Reservado for
redundant %2
output 65536 - RQS
expansion
96 kbytes
Redundant RQD khytes
%0 RAD =RQS ... 81919
diagnostics RQD default = 16384
80 kbytes
Reserved for
redundant %Q
diagnostics 81920 - RQD
expansion
. Yo
Non-
16 kbytes L redundant %Q 16 kbytes

Figure 166: Redundant and Non-redundant %Q Allocation

6.3.3.9. Redundant and Non-redundant %M Variables

The NX3030 CPU allocates 64 kbytes of %M variables (%MBO ... %MB65535).
All the 65535 bytes can be redundant (%MBO000O ... %MB65535). By default the redundant %M variables quantity is 0.

The %M variable use must be avoided and the use of symbolic variables preferred (see Redundant and Non-redundant
Symbolic Variables section).

271

]
=
G

\

6. REDUNDANCY WITH NX3030 CPU

6.3.3.10. Redundant and Non-redundant Symbolic Variables

Besides the direct representation variables (%I, %Q and %M) which are allocated automatically, the user can explicitly
declare symbolic variables, inside of POUs or GVLs. The maximum size allowed for redundant symbolic variables allocation
is 512 kbytes.

Symbolic variables must not be confused with AT variables. The AT variables are mere
symbolic names attributed to direct representation variables (%I, %Q and %M), using the
“AT” declaration. Thus, AT variables don’t allocate any symbolic variables memory.

Symbolic variables are redundant in the following cases:

= When declared in POUs from the “program” type created in the user application, exceptionally the NonSkippedPrg
program

= When declared in GVLs created in the user application and these GVLs marked as redundant
Symbolic variables aren’t redundant in the following cases:

= When declared in the NonSkippedPrg program. This program has been described previously in the NonSkippedPrg
Program section

= When declared in POUs from the “function” type. It can be observed this POUs normally must allocate variables only
on the stack (non static), which consequently don’t need to be redundant. If the user declares static variables (VAR
STATIC) inside the POUs from the “function” type, this will be considered bad programming. Such static variables, in
case they are created, will be considered non-redundant

= When declared in POUs from the “function block” type. It can be observed the mere “function block™ declaration
doesn’t allocate memory (what allocates memory is to turn a function block into as instance)

It must be observed that the function blocks instances, declared inside POUs from the program type or inside GVLs,
behave as symbolic variables, in other words, allocate redundant memory. In the same way symbolic variables, when function
block instances, are declared in the NonSkippedPrg program or when the GVL isn’t marked as redundant, such instances are
non-redundant.

6.3.4. Multiple Mapping

If the user desires to map the redundant command variables in more than one communication port (COMx or NETX) it’s
necessary the implementation of a control by the user within his own application.

The control logic to be implemented must write in the redundant command variables based on the variables (commands)
values from each communication port (COMx or NETx). Besides that, the control logic must restart the communication ports
command variables, as the redundancy control just restarts its own command variables.

The following is an example of this implementation:

VAR

var_StandBy_command_Ethernet_relation : BOOL;
var_StandBy_command_Serial_relation : BOOL;
var_Inactive_command_Ethernet_relation : BOOL;
var_Inactive_command_Serial_ relation : BOOL;
var_TurnOn_command_Ethernet_relation : BOOL;
var_Turn_command_Serial_relation : BOOL;
END_VAR

//Logic to put the local PLC in StandBy

IF var_StandBy_command_Ethernet_relation = TRUE THEN
DG_NX4010.tRedundancy.RedCmdLoc.bStandbyLocal :=TRUE;
var_StandBy_command_Ethernet_relation:=FALSE;

END_IF

IF var_StandBy_command_Serial_relation = TRUE THEN
DG_NX4010.tRedundancy.RedCmdLoc.bStandbyLocal :=TRUE;
var_StandBy_command_Serial_ relation:=FALSE;

END_TF

278

Q
=
G

\

6. REDUNDANCY WITH NX3030 CPU

//Logic to put the local PLC in Inactive

IF var_Inactive_command_Ethernet_relation = TRUE THEN
DG_NX4010.tRedundancy.RedCmdLoc.bInactiveLocal :=TRUE;
var_Inactive_command_Ethernet_relation:=FALSE;

END_TIF

IF var_Inactive_command_Serial_relation = TRUE THEN
DG_NX4010.tRedundancy.RedCmdLoc.bInactivelLocal :=TRUE;
var_Inactive_command_Serial_relation:=FALSE;

END_TF

//Logic to switch on the local PLC switched off by the PX2612
IF var_TurnOn_command_Ethernet_relation = TRUE THEN
DG_NX4010.tRedundancy.RedCmdLoc.bTurnOnLocal : =TRUE;
var_TurnOn_command_Ethernet_relation:=FALSE;

END_TF

IF var_Turn_command_Serial_relation = TRUE THEN
DG_NX4010.tRedundancy.RedCmdLoc.bTurnOnLocal : =TRUE;
var_Turn_command_Serial_relation:=FALSE;

END_TF

Above there’s an example in ST language, where the redundancy command can be executed through two variables from dif-
ferent communication ports. On the same example, three different commands were executed (StandBy, Inactive and TurnOn).

Where:

var_StandBy_command_Ethernet_relation: Bool type variable attributed to an Ethernet communication Coil which will
execute the command to put the local Half-Cluster in Stand-By.

var_StandBy_command_Serial_relation: Bool type variable attributed to a Serial communication Coil which will exe-
cute the command to put the local Half-Cluster in Stand-By.

DG_NX4010.tRedundancy.RedCmdLoc.bStandbyLocal: this command executes an action similar to the button STAND-
BY from the PX2612, in the local PLC.

var_Inactive_command_Ethernet_relation: Bool type variable attributed to an Ethernet communication Coil which will
execute the command to put the local Half-Cluster in Inactive.

var_Inactive_command_Serial_relation: Bool type variable attributed to a Serial communication Coil which will execute
the command to put the local Half-Cluster in Inactive.

DG_NX4010.tRedundancy.RedCmdLoc.bInactiveLocal: this command executes an action similar to the button INAC-
TIVE from the PX2612, in the local PLC.

var_TurnOn_command_Ethernet_relation: Bool type variable attributed to an Ethernet communication Coil which will
execute the command to reactivate the local Half-Cluster after switched off by the PX2612 relay.

var_Turn_command_Serial_relation: Bool type variable attributed to a Serial communication Coil which will execute
the command to reactivate the local Half-Cluster after switched off by the PX2612 relay.

DG_NX4010.tRedundancy.RedCmdLoc.bTurnOnLocal: this command executes an action similar to the button TURN
ON PLC from the PX2612, in the local PLC.

6.3.5. Diagnostics, Commands and User Data Structure

Each CPU has several data structure related to redundancy. The following structure is AT variables mapped over %Q
variables:

= RedDgnLoc: has diagnostics from the CPU (local) related to the redundancy, as the CPU redundancy state, for instance

= RedDgnRem: it’s a copy from the other CPU RedDgnLoc, received through NETA/NETB synchronism channels. This
way, this CPU (local) has access to the other CPU (remote) diagnostics

= RedCmdLoc: has commands which must be applied on this CPU (when called Local) or on the other CPU (when called
Remote). E.g. the StandbyLocal field from this data structure corresponds to a command which must be executed in
this CPU (local), while the StandbyRemote field corresponds to a command which must be executed in the other CPU
(remote)

= RedCmdRem: it’s a copy from the other CPU RedCmdLoc, received through NETA/NETB synchronism channels. This
way, this CPU (local) can execute commands received from the other CPU (remote)

279 altus

——

6. REDUNDANCY WITH NX3030 CPU

= RedUsrLoc: has 128 bytes of data filled freely by the user (e.g. communication diagnostics with a SCADA system).
These 128 bytes of data can be interchanged with the other CPU (remote)

= RedUsrRem: it’s a copy from the other CPU RedUsrLoc, received through NETA/NETB

On Redundancy Maintenance section, the following sub-sections offer more details regarding these data structures:

Redundancy Diagnostics Structure
Redundancy Commands
User Information Exchanged between PLCA and PLCB

6.3.6. Cyclic Synchronization Services through NETA and NETB

This section describes the three synchronization services which occur cyclically in a redundant CPU between PLCA and
PLCB, through NETA and NETB synchronism channels.

These services are executed at the beginning of each MainTask cycle, and in the sequence which they appear below:

= First, the Diagnostics and Commands Exchange service is executed
= Second, the Redundant Data Synchronization service is executed
= Third, the Redundant Forcing List Synchronization service is executed

6.3.6.1. Diagnostics and Commands Exchange

This service is responsible by the interchange of the following data structures, in each MainTask cycle:

= To copy RedDgnLoc from PLCA to PLCB RedDgnRem
= To copy RedCmdLoc from PLCA to PLCB RedCmdRem
= To copy RedUsrLoc from PLCA to PLCB RedUsrRem

= To copy RedDgnLoc from PLCB to PLCA RedDgnRem
= To copy RedCmdLoc from PLCB to PLCA RedCmdRem
= To copy RedUsrLoc from PLCB to PLCA RedUsrRem

The service will be executed using only one synchronism channel (NETA or NETB). This way the service can be completed
even if one channel has problems.

6.3.6.2. Redundant Data Synchronization

This service is responsible for the redundant variables transferring, from the Active CPU to the Inactive CPU. As previously
described, there are symbolic redundant variables and also redundant direct representation variables (%I, %M and %Q).

For this service to be executed, several conditions must be satisfied:

= The previous synchronization service in this MainTask cycle (Diagnostics and Commands Exchange) must be completed
with success.

» In case this CPU is in Active state, the other must be in Non-Active state. On the other hand, in case this CPU is in
Non-Active state, the other must be in Active state.

= Both projects (2 CPUs) must be identical, except when the project automatic synchronization is disabled (see Project
Synchronization Disabling) section.

= At least one synchronism channel (NETA and/or NETB) must be operational. If both synchronism channels (NETA
and NETB) are operational, the communication is distributed between both (load balances) in order to reduce the syn-
chronization time. In case only one channel is operational, the synchronism will continue to be executed only by this
channel, keeping the redundant data synchronization.

280

6. REDUNDANCY WITH NX3030 CPU

6.3.6.3. Redundant Forcing List Synchronization

This service is responsible for the redundant forcing list transferring, from the Active CPU to the Inactive CPU.
For this service to be executed, several conditions must be satisfied:

= Both synchronization services previous to this cycle (Diagnostics and Commands Exchange) must be completed with
success

= In case this CPU is in Active state, the other must be in Non-Active state. On the other hand, in case this CPU is in
Non-Active state, the other must be in Active state

= Both projects (2 CPUs) must be identical, except when the project automatic synchronization is disabled (see Project
Synchronization Disabling) section

= At least one synchronism channel (NETA and/or NETB) must be operational. If both synchronism channels (NETA
and NETB) are operational, the communication is distributed between both (load balances) in order to reduce the syn-
chronization time. In case only one channel is operational, the synchronism will continue to be executed only by this
channel, keeping the redundant data synchronization

The redundant forcing list has only forcing over redundant variables. On each CPU (PLCA
and PLCB), there can be a different forcing list related to non-redundant variables.

6.3.7. Sporadic Synchronization Services through NETA and NETB

The following synchronization services are executed sporadically, in other words, they are not executed in each MainTask
cycle. Another system task executes these sporadic services in background.

6.3.7.1. Project Synchronization

This service is responsible for synchronizing the Active CPU and Non-Active CPU projects. This happens when the
projects are different in both CPUs and the automatic projects synchronization is enabled on both CPUs.

The synchronization is always from the Active CPU to the Non-Active CPU and it’s enough that one out of two synchronism
channel (NETA or NETB) is operational for this service to be executed.

When the synchronization is enabled, the following files and services will be synchronized:

Project application (executable code)
Project archive (source code)

Users and groups

Access rights

Trace

The synchronization service will start within thirty seconds after one of the CPUs goes to Active state, and after its begin-
ning, the project CRC will be checked every five seconds.

When synchronization is started the Non-Active CPU goes to Stop mode, at the Not-Configured state. After the transferring
of all necessary files, the Non-Active CPU goes to Run, at Starting state. In case the transfer fails, the CPU goes back to Not-
Configured state.

The time the synchronization will take to be fully executed depends on the project size. In average, a transfer rate between
the synchronism channels is approximately 500 kbytes/s.

In case the synchronization is interrupted (communication loss between synchronism channels) during the files transferring
from the Active CPU to the Non-Active CPU, the procedure is aborted and restarted when the communication is restored. Only
after the conclusion of the whole procedure the Non-Active CPU goes to Run mode.

Besides keeping the projects synchronized, the Project Synchronization will also avoid the Non-Active CPU to assume
superior states in relation to Starting in case the CRC is different or some Online Change is to be executed in the Active CPU.

ATTENTION

A project synchronization will have the same effect as a download in the Non-Active CPU.
This service isn’t executed if the automatic Project Synchronization is disabled, as it’s de-
scribed on Project Synchronization Disabling section.

No synchronization service between PLCA and PLCB works in case the synchronism chan-
nels cables are inverted. E.g. to connect the NETA channel in the NETB channel from PLCB
and the NETB from the PLCA in the NETA in the PLCB.

281

Q
=
G

\

6. REDUNDANCY WITH NX3030 CPU

ATTENTION

In the update from the version 1.20 to later versions of MasterTool IEC XE, was done a
modification in the communication protocol between the synchronism channels. Therefore,
is not possible to sync data between two PLCs when one of the applications has been created
in a version prior to 1.21 and another application has been created in an equal or higher
version. To be able to perform the synchronization, you should perform the actions described
at section Not Loading the Application at Startup of the PLC with the oldest project. Doing
this, the application will not be loaded, but, when this PLC goes to Non-Configured state
during the system initialization, the applications will be synchronized automatically.

ATTENTION

|

Before version 2.01 of MasterTool IEC XE, when sending the source code to the active
CPU, the Stand-by CPU went for Not-Configured state to sync it. However, to complete the
synchronization operation, the CPU remained in the state Not-Configured, being necessary
to pass the CPU to Stand-by status via STAND-BY button on the PX2612 or equivalent
command. Starting with version 2.01 the CPU that is in Stand-by will change your state to
Not-Configured during the synchronization process, but will return automatically when the
sources are the same between the two Half-Clusters.

6.3.8. Project Synchronization Disabling

On Sporadic Synchronization Services through NETA and NETB section, application project and archive project synchro-
nization services were described. These services normally must be enabled, and are useful when the project modifications can
be downloaded online in the Active CPU and the Stand-by CPU afterwards, automatically, through the synchronism channels
NETA/NETB.

However, there are project modifications which can’t be downloaded online in any CPU, e.g. the inclusion of modules in
a PROFIBUS remote, or the inclusion of a new PROFIBUS remote. In these cases, using the CPU and PROFIBUS network
redundancy, such modifications can be made without interrupting the process control. A procedure to accomplish this objective
is described in the Exploring the Redundancy for Offline downloading of Modifications without Interruption of the Process
control section.

In this procedure it’s necessary to disable temporarily the project synchronizations, allowing, for a while, one CPU to
operate with a project new version, while the other CPU still operates with the old project version.

A NX3030 CPU has a register for Project Synchronization Disabling, non-volatile, which allows the disabling of the project
application and project archive synchronization services. This register can be adjusted using MasterTool. It’s enough to disable
the project synchronization in one of the two CPUs to guarantee it doesn’t work anymore.

To disable the Project synchronization, the user must, firstly, connect into desired PLC with the software MasterTool (see
section MasterTool Connection with a NX3030 CPU from a Redundant PLC).

Next, in the Online / Redundancy Configuration menu, the combo-box Project Synchronization must be opened, allowing
the selection of the two following options:

= Enable
= Disable

The option “Disable” must be selected and the combo-box correspondent “Write” button pressed. A message informs if
the operation is successful or not.

The disabling configuration of project synchronism isn’t part of the redundant project developed in the MasterTool. Such
configuration is only in a non-volatile memory area in the CPU, which can be read or written using MasterTool. MasterTool
doesn’t save this configuration in any file.

This configuration is copied on each cycle of MainTask, from the non-volatile memory to the DG_NX4010.tRedundancy.RedDgnl.oc
.sGeneral_Diag.bProjectSyncDisable. The user can verify this diagnostics in the PLC to see if the command succeeded, since
the PLC is in Run mode (DG_NX4010.tRedundancy.RedDgnlLoc.sGeneral_Diag.bProjectSyncDisable must be 1). In case the
PLC isn’t in Run mode, it’s possible to verify configuration straight on the NX3030 CPU display in the PLC (see Redundancy
Diagnostics on NX3030 CPU Graphic Display section).

The DG_NX4010.tRedundancy.RedDgnloc.sGeneral_Diag.bProjectSyncDisable diagnostic can also be observed also in
the remote PLC through the DG_NX4010.tRedundancy.RedDgnRem.sGeneral_Diag.bProjectSyncDisable (since the Non-
Active PLC is in Run mode). A PLC (Active or Non-Active) stops the project synchronization service every time any of
the following bits are true:

= DG_NX4010.tRedundancy.RedDgnLoc.sGeneral_Diag.bProjectSyncDisable
 This PLC, local bit. This PLC is with the project synchronization disabled

282

Q
=
G

\

6. REDUNDANCY WITH NX3030 CPU

= DG_NX4010.tRedundancy.RedDgnRem.sGeneral_Diag.bProjectSyncDisable
* The other PLC, remote bit. The remote PLC is with the project synchronization disabled

The Project Synchronization Disabling register isn’t part from the redundant CPU project,
thus it’s not saved as part of it in the computer where MasterTool is being executed. The
register is saved only in the non-volatile CPU memory.

6.3.9. PROFIBUS Network Configuration

It’s possible to install up to four PROFIBUS Master NX5001 modules in each half-cluster. So, we can define up to two
redundant PROFIBUS networks, called PROFIBUS 1 and PROFIBUS 2, or up to four simple PROFIBUS networks, called
PROFIBUS 1, PROFIBUS 2, PROFIBUS 3 and PROFIBUS 4, or even one redundant network and two simple ones, named
PROFIBUS 1, PROFIBUS 2 and PROFIBUS 3.

6.3.9.1. PROFIBUS Redundancy

Each of the PROFIBUS networks can be redundant or non-redundant. For example, if PROFIBUS 1 network is redundant,
it will be divided into PROFIBUS 1 A and PROFIBUS 1 B. If it’s non-redundant, there’s going to exist only PROFIBUS 1 A.
The same applies to the PROFIBUS 2.

Figure 159 shows an example with a single PROFIBUS network (PROFIBUS 1), which is redundant (PROFIBUS 1 A and
PROFIBUS 1 B).

Only a few remote types can be connected straight to this redundant PROFIBUS network:

= PO5063V5: PROFIBUS slave DP-VO for Ponto Series remotes

» PO5065: PROFIBUS slave DP-V1 with Hart, for Ponto Series remotes
» AL-3416: PROFIBUS slave DP-VO for AL-2004 CPU

= NX5210: PROFIBUS slave DP-VO for Nexto Series remotes

Figure 159 also shows the possibility to connect non-redundant remotes to this type of redundant PROFIBUS network,
through the AL-2433 module (ProfiSwitch). Such non-redundant PROFIBUS remotes can be from any brand or model.

6.3.9.2. PROFIBUS Failure Modes Vital and Not-Vital

Each one of the PROFIBUS networks can be configured in two different modes:

= Vital failure: in case this network fails completely, this failure can determine a redundancy state transition in the re-
dundant CPU (switchover). In case a redundant PROFIBUS network, a complete failure implies in the failure of both
composing networks.

= Not-Vital failure: even if this network fails completely, this failure won’t determine a redundancy state transition in the
redundant CPU (switchover).

6.3.10. Redundant Ethernet Networks with NIC Teaming

Figure 159 shows two redundant Ethernet networks examples, with NIC Teaming.

In the first case, the NX3030 CPU connects to the supervision network (SCADA), also used for configuration through
MasterTool. Both NX3030 CPU Ethernet ports (NET 1 and NET 2) form a NIC Teaming redundant pair, interconnected in
two different switches (Ethernet A and Ethernet B). In some point, these two switches must be interconnected, for the two NIC
Teaming ports connection and for an even higher availability (against double failures).

In the second case, two NX5000 modules also form a NIC Teaming redundant pair, interconnected in two different switches
(Ethernet HSDN A and Ethernet HSDN B). In some point, these two switches must be interconnected, for the two NIC Teaming
ports connection and for an even higher availability (against double failures).

Such Ethernet architectures turn possible an excellent availability, against Ethernet port failures, in cables and switches.

If two modules, or Ethernet interfaces, form a NIC Teaming redundant pair, the configuration
and device inclusion will be only possible in the first interface. The second interface will
have his configuration parameters blocked for edition.

283 altus

6. REDUNDANCY WITH NX3030 CPU

A cluster of two Ethernet ports forming a NIC Teaming pair has a single IP address, related to the port pair. This way, a
client as SCADA or MasterTool, connected to a CPU server, doesn’t need to worry in IP address changing in case there’s a
failure in any NIC Teaming pair port.

Each of the Ethernet interfaces that form the NIC Teaming pair have an unique diagnostics structure to point to failures
which eventually might appear in any port of a NIC Teaming pair.

For further details regarding NIC Teaming configuration and diagnostics, see the following sections:

= Ethernet Ports Configuration in the CPU NX3030 (NET 1 and NET 2)
= NX5000 Modules Configuration

6.3.11. TP Change Methods

A redundant cluster from Nexto Series has four methods for IP change in the Ethernet ports of the NX5000 modules in each
half-cluster and one method for IP change in the NET 1 and NET 2 ports of the NX3030 CPU. These methods define the ports’
behavior, regarding its IP, according to the current state of the half-cluster (Active or Non-Active) and with the half-cluster
(PLCA or PLCB).

The methods are: Fixed IP, Exchange IP, Active IP and Multiple IP.
Overall, it can be listed up to four IPs, according to the IP change method.

6.3.11.1. Fixed IP

It’s the simplest method for IP addressing and can be configured in the Ethernet interfaces in the NX5000 Ethernet modules.
In this method, it’s only listed the IP addresses from the PLCA and from PLCB. Apart from the redundancy state, PLC Active
or Non-Active, the PLCA will always answer by the configured IP, as also will PLCB.

Cluster IP Addressing Method
Fixed IP W

Cluster IP Addressing
IF Address PLC A 192 . 168 . 15 . 68

IF Address PLC B 192 , 168 . 15 . &9
Subnetwork Mask | 255 . 255 .255 . 0

Gateway Address | 192 . 168 . 15 . 253

Advanced...

Figure 167: Fixed IP method

Parameters that must be configured in the Fixed IP method:

» [P Address PLC A: PLCA communication address
IP Address PLC B: PLCB communication address
» Subnetwork Mask
Gateway Address

6.3.11.2. Exchange IP

The Exchange IP can be configured in the Ethernet interfaces in the NX5000 Ethernet module. In this method, the half-
cluster IP depends on the PLC state (Active or Non-Active). On every switchover the IP change occurs between the half-clusters
allowing them to assume the IP address from the new redundancy state.

PS: for this addressing method, the Ethernet ports from both PLCs (PLCA and PLCB) assume the same IP address while
they both are in the Non-Active state, generating a network address conflict. Considering this situation uncommon, where no
PLC is controlling the system, this turns out to be a big problem and has to be considered.

6. REDUNDANCY WITH NX3030 CPU

Cluster IP Addressing Method
Exchange IP

Cluster IP Addressing

IP Address Active 192 .
IF Address Mon Active | 192 .
Subnetwork Mask 255

Gateway Address 192 .

. 255

168

168

168

. 255

15

15

15

. 68

. B9

. 253

Advanced...

Figure 168: IP Automatic Change

Parameters that must be configured in the Exchange IP method:

» [P Address Active: PLCA communication address

= [P Address Non Active: PLCB communication addre
= Subnetwork Mask

= Gateway Address

6.3.11.3. Active IP

SS

This method is used in the redundant NX3030 CPU NETs and it’s also possible to be configured in the NX5000 modules.
In this method there’s an IP for the Active half-cluster and two more IPs, one for the PLCA and another for the PLCB. In the
redundant NX3030 CPU NETs, the Active IP address is added to the interface of the Active PLC, and it can use either the
Active IP address or the PLCX IP address in order to establish communication with the PLC. On the other hand, in the NX5000
Ethernet modules the Active IP address substitutes the Non-Active PLCX IP address, when the PLC is in Active mode.

Cluster IP Addressing

IP Address Active
IF Address PLC A
IP Address PLC B
Subnetweork Mask

Gateway Address

192 .

192 .

192 .

255

192 .

168

168

168

255

168

15 . 1
15 . B&
15 . 7
L2535 . 0
15 . 253
Advanced...

Figure 169: Active IP method — Redundant NX3030

Parameters that must be configured in the Active IP method for the NETs of a redundant NX3030 CPU:

= JP Address Active: IP address added to the interface when the PLC is in Active state
» [P Address PLC A: PLCA communication address, apart from its current state
» [P Address PLC B: PLCB communication address, apart from its current state

= Subnetwork Mask
= Gateway Address

285

]
=
G

\

6. REDUNDANCY WITH NX3030 CPU

Cluster IP Addressing Method
Active IP

Cluster IP Addressing

IP Address Active
IF Address PLC A Mon Active
IP Address PLC B Mon Active
Subnetwork Mask

Gateway Address

192 .

192 .

192 .

255

192 .

168 .

168 .

168 .

. 255

168 .

15

15

15

. 253 .

15

. 63

. 69

. 253

Advanced...

Figure 170: Active IP method — NX5000

Parameters that must be configured in the Active IP method for the NX5000 Ethernet modules:

» [P Address Active: Active PLC communication address. Replaces the IP address from the Non-Active PLCX

6.3.11.4. Multiple IP

IP Address PLC A Non Active: PLCA communication address, when in Non-Active state
IP Address PLC B Non Active: PLCB communication address, when in Non-Active state
Subnetwork Mask
Gateway Address

The Multiple IP method can be configured in the Ethernet interfaces from the NX5000 Ethernet modules. In this method
there’s an IP for each half-cluster and for each state of the PLC. The PLCA assumes an IP address when it’s Active and another
when it’s Non-Active. The same happens for the PLCB regarding its state (Active or Non-Active).

Cluster IP Addressing Method
Multiple TP

Cluster IP Addressing

IP Address PLC A Active

IF Address PLC A Mon Active
IP Address PLC B Active

IP Address PLC B Mon Active
Subnetwork Mask

Gateway Address

192 .

192 .

192 .

192 .

255 .

192 .

168

168

168

168 .

255

168 .

. 13

. 15

. 15

15

. 253 .

15

. B8

. B8

. 7l

. 253

Advanced...

Figure 171: Multiple IPs method

Parameters that must be configured in the Multiple IP method:

IP Address PLC A Active: PLCA communication address, when in Active state

IP Address PLC A Non Active: PLCA communication address, when in Non-Active state
IP Address PLC B Active: PLCB communication address, when in Active state

IP Address PLC B Non Active: PLCB communication address, when in Non-Active state
Subnetwork Mask

Gateway Address

286

]
=
G

\

6. REDUNDANCY WITH NX3030 CPU

6.3.12. NIC Teaming and Active IP Combined Use

In case a determined port pair form a NIC Teaming in a redundant CPU, these ports can implement, at the same time, the
strategies NIC Teaming and Active IP.

E.g. if the NX3030 CPU NET 1 and NET 2 ports form a NIC Teaming pair, then:

= [P Address PLC A: IP address of the NET 1 + NET 2 ports in the PLCA NX3030 CPU
= [P Address PLC B: IP address of the NET 1 + NET 2 ports in the PLCB NX3030 CPU
= [P Address Active: IP address of the NET 1 + NET 2 ports in the NX3030 CPU in the Active CPU

This way, the excellent availability from the NIC Teaming strategy is associated with the practicality of the Active IP
strategy, which doesn’t need scripts in SCADA systems or in other clients connected to the Active CPU server.

6.3.13. Ethernet Interfaces Use with Vital Fault Indication

The Ethernet ports of NX3030 and NX5000 modules can be configured to generate vital failures. This option is important
for applications in which the modules of inputs and outputs are distributed over Ethernet network. In this case, if a failure
occurs on the Ethernet port, this will generate a switchover. This behavior is applicable only to Ethernet ports where there is at
least a communication driver that manages fault.

The communication drivers that generate vital failure are MODBUS Client and MODBUS Symbol Client (all references
to MODBUS Client in the following sections apply to both cases). The MODBUS Server drivers, MODBUS Symbol Server
and EtherCAT Master do not generate vital failure. Thus, if an Ethernet port has a MODBUS Client driver configured and a
failure occurs in the Ethernet port, a switchover will be generated if vital fault option is enabled. If the driver configured on
the Ethernet port is a MODBUS Server, even if there is failure in the door, it will not generate a vital failure that causes a
switchover.

To a fault be considered a vital failure in an Ethernet port on a MODBUS Client, all servers configured in the driver must
be faulty. That is, if there is more of a MODBUS Client driver configured in the same Ethernet port, is considered vital failure
when all servers of both Clients are faulty.

When the Ethernet port is configured to operate with NIC Teaming, the vital failure will be considered only when the two
pair of doors fail.

6.3.13.1. Failure in Ethernet Interface

A switchover can be generated due to failure in the Ethernet interface, such as a loss of link. The link loss may be caused,
for example, by a cable breakage or failure of a switch on the Ethernet network. Accordingly, it is necessary that, in addition
to being configured to generate vital failure, there is a MODBUS Client instance configured on the Ethernet interface.

When the interval of MainTask is greater than or equal to 100 ms after the fault is detected the switchover will occur in up
to two cycles of MainTask. When the interval of MainTask is less than 100 ms switchover will occur within 100 ms plus the
time of MainTask after detection of failure.

6.3.13.2. Failure in Connected MODBUS Server

The time to detect the fault in a remote MODBUS Server depends on the time-out settings configured on each MODBUS
Client. When a fault is detected in all Servers, the bAllDevicesCommPFailure diagnostic (see Modbus Diagnostics used at
Redundancy) section used in) changes its state to TRUE. When this happens, the switchover will happen 3 seconds after this
transition.

6.3.14. OPC DA Communication Use with Redundant Projects

The OPC DA protocol can be configured to communicate with redundant clusters over SCADA systems. When this option
is selected in the creation of a redundant project, the Symbol Configuration object is added to the project. In this object are set
system variables that will be sent to the SCADA system. This communication option is enabled in the CPU of the Ethernet
ports NX3030. For further information related to the configuration of an OPC communication with redundant projects, refer
to the Configuration with the PLC on the OPC DA Server with Connection Redundancy section of this Manual.

6. REDUNDANCY WITH NX3030 CPU

6.3.15. Redundant CPU States

In a redundant system, a CPU (PLCA or PLCB) may assume the following states:

= Active

= Stand-by

= Inactive

= Not-Configured
= Starting

Frequently this manual will use the designation “Non-Active” for each state different from
Active, in other words, to design any one from the other 4 states (Stand-by, Inactive, Not-
Configured and Starting). An Active CPU is the one that is in Active state and a Non-Active
CPU is the one that isn’t in Active state.

In the following sections these five states are briefly described. Further details regarding the redundant CPU states are
described in the Transition between Redundancy States section, when the state machine and the transition causes are also
described.

6.3.15.1. Not-Configured State

This is the initial redundancy state. The CPU is found in this redundancy state:

= By convention, while the CPU is OFF

= Before starting the MainTask

= Before the Starting state is switched

= In case there’s a restart through a command as Reset Warm, Reset Cold or Reset Origin

In case the MainTask is being executed in the Not-Configured state, the following tasks are executed:

= The PROFIBUS masters are disabled

= The cyclic synchronization services are executed (see Cyclic Synchronization Services through NETA and NETB sec-
tion), if the conditions for its execution are true

= The sporadic synchronization services can also be executed (see Sporadic Synchronization Services through NETA and
NETB section)

The CPU will be blocked in the Not-Configured state if the other CPU is in Active state, and this CPU project is different
from the Active CPU project (except if the project automatic synchronization is disabled — see Project Synchronization
Disabling). In case this situation doesn’t occur, a transition from the Not-Configured state to the Starting state happens as soon
as a configuration request arrives.

Sometimes, the CPU goes to Not-Configured state when has already received an automatic configuration request, when the
new request for Starting state changing is not necessary. This happens at the CPU energizing, for instance.

In other situations, the user must request manually this configuration, e.g. pressing a button on the PX2612 redundancy
command panel. Manually configuration requests typically aren’t necessary when an user maintenance is needed before going
out from the Not-Configured state, e.g. if the CPU hasn’t reached the Not-Configured state due to some failure.

After getting out from the Not-Configured state, the PLC can go back to this state, due to events such as:

= Restarting (Reset Warm, Cold or Origin)
= PLC switch off
= Different projects between this PLC and the Active PLC

288

\

Q
=
G

6. REDUNDANCY WITH NX3030 CPU

6.3.15.2. Starting State

Different from all other 4 states which can last indefinitely, the Starting state is temporary, taking only a few seconds. This
state is always reached from the Not-Configured state, through a configuration request.

At the beginning of the Starting state, several actions, tests and verifications are executed, in order to decide which will be
the next state:

= PROFIBUS masters are enabled in a passive state. The passive mode is used to test the transmission and reception
PROFIBUS circuits and the physical layer, to avoid an occult failure to happen

= Verify if the CPU identification is correct (must be PLCA or PLCB)

= Verify if there are problems in the configuration parameters extracted from MasterTool project

= Verify the NX4010 module integrity

= The cyclic synchronization services are executed (see Cyclic Synchronization Services through NETA and NETB sec-
tion), if the conditions for its execution are true

= Verify the firmware compatibility version between both CPUs

= Verify if the projects from both CPUs are equal, if the project automatic synchronization is enabled (see Project Syn-
chronization Disabling section)

= In case the other CPU is in Active state, verify the possibility to establish a passive PROFIBUS communication with it.
The passive mode is used to test the transmission and reception PROFIBUS circuits and the physical layer, to avoid an
occult failure to happen

= In case the other CPU is in unknown state due to failures in NETA and NETB, verify the possibility of establishing
a passive PROFIBUS communication with it. If there is no PROFIBUS network in the project and it neither has the
PX2612 Panel, check if CPU’s NET1/NET2 are receiving Keep Alive packages from the other half-cluster.

Depending on the results of these verifications and tests, the CPU can go from the Starting state to any from the other four
states.

6.3.15.3. Active State

In this state, the CPU controls the automated process, using the ActivePrg program, executed only in this state. The Active
CPU also updates the PROFIBUS remote I/O system, putting its PROFIBUS masters in active state. The active state is used to
establish communication with the PROFIBUS remotes (slaves).

The Active CPU also verifies its internal diagnostic and user switchover requests to determine if a switchover is necessary.
The CPU goes out from the Active state only if it knows the other CPU is in Stand-by mode, and able to assume as Active.

However, there are some situations where the Active CPU could go out from the Active state even with no certainty that
the other CPU is in Stand-by state (e.g. if the CPU is switched off).

6.3.15.4. Stand-By State

In this state the CPU is ready to be switched to the Active state, in case there’s a request for that, as a failure in the Active
CPU.

The Stand-by CPU also verifies its own diagnostics and can be switched to the Not-Configured or Inactive state, in case
some failures occur.

PROFIBUS masters are enabled in the passive state. The passive mode is used to test the transmission and reception
PROFIBUS circuits and the physical layer, to avoid an occult failure to happen. Total failure in PROFIBUS networks con-
figured as vitals cause a switching to the Inactive state. A total failure in a PROFIBUS network damages both composing
networks (redundant PROFIBUS network) and the single composing network (non-redundant PROFIBUS network).

If the Ethernet interfaces are enabled with vital failure option, clients are enabled in passive state. Total failures in Ethernet
networks configured as vital cause a switch to the Inactive status. A total failure in an Ethernet network reaches the two
networks that comprise (Redundancy of Communication option enabled) or the only network that compose (Redundancy of
Communication option disabled).

6.3.15.5. Inactive State

This state is normally reached after some failure types, or due to a manual request before a programmed maintenance.

PROFIBUS masters are enabled in the passive state. The passive mode is used to test the transmission and reception
PROFIBUS circuits and the physical layer, to avoid an occult failure to happen.

Before switching to another state, first the diagnosed failures must be corrected or the programmed maintenance executed,
if those have driven the CPU to Inactive state. After, a transition for the Not-Configured state must be done, requesting a
configuration. Then, a switch to the Starting state must be executed. After the Starting state, the CPU can:

289 altus

——

6. REDUNDANCY WITH NX3030 CPU

Return to the Inactive state, if determine failure types remain
Return to the Not-Configured state, in case of other failure types
Go to Stand-by state, if the other CPU is in Active state

Go to Active state, if the other CPU isn’t in Active state

6.3.16. PX2612 Redundancy Command Panel Functions

The PX2612 redundancy command panel is shown on Figure 162, while Figure 163 shows its frontal view with more
details. Besides this, Figure 164 shows how this panel must be connected to the PLCA and PLCB half-clusters.

The PX2612 is divided in two sections: one controlled by PLCA and another by PLCB. These controllers are possible
through cables AL-2317/A for PLCA and AL-2317/B for PLCB, and allow each CPU to read three buttons, write on three
LEDs and a NO relay contact.

Observing the frontal view on Figure 163:

PLCA executes the STAND-BY and INACTIVE buttons reading in PLC A sector

PLCA executes the TURN ON PLC B button reading

PLCA executes the writing on the three LEDs (ACTIVE, STAND-BY and INACTIVE) from the PLC A sector
PLCA executes the writing on the RL B relay, used to switch off PLCB

PLCB executes the STAND-BY and INACTIVE buttons reading in the PLC B sector

PLCB executes the TURN ON PLC A button reading

PLCB executes the writing on the three LEDs (ACTIVE, STAND-BY and INACTIVE) from the PLC B sector
PLCB executes the writing on the RL A relay, used to switch off PLCA

6.3.16.1. PX2612 Buttons

This section describes the functions of the PX2612 buttons.
The STAND-BY button has the following functions:

= To request a switching from the Active state to the Stand-by state, useful when maintenance in the Active CPU is needed.
After the Active CPU is switched to Stand-by (and consequently the Stand-by CPU is switched to Active), it’s possible
to switched from Stand-by to Inactive using the INACTIVE button, and then execute the programmed maintenance in
the inactive state

= To request a configuration which causes a switching from the Not-Configured to the Starting state, typically after the
failures that caused the transition to the Not-Configured state are repaired. After the Starting state, normally the CPU is
supposed to go to the Stand-by state (or Active, if the other CPU isn’t in the Active state)

= To request a switching from the Inactive state to the Not-Configured state requesting a configuration already. This occurs
typically after the failures which caused the transition to the Inactive state were corrected. After the Not-Configured state,
the configuration must take it to the Starting state. After the Starting state, normally the CPU is supposed to go to the
Stand-by state (or Active, if the other CPU isn’t in the Active state)

The INACTIVE button requests a switching from the Stand-by state to the Inactive state, which can be useful to execute
a programmed maintenance in the Stand-by CPU. After this maintenance, the STAND-BY button may be used to make it
go back to the Stand-by state, passing by the Not-Configured and Starting state (see previous description of the STAND-BY
button).

The TURN ON PLCx (x = B for PLCA, or x = A for PLCB) button is used to cause a reactivating in the other CPU, in case
the local CPU has switched off. As it is described in the Transition between Redundancy States section.

There are exceptional situations when a CPU switches off the other at assuming the Active state, in order to avoid the
possibility of both CPUs to assume the Active state simultaneously.

ATTENTION

For a button to be considered, it must be pressed for at least 1 second. Furthermore, during
this second, only this button must be pressed (the other 2 buttons must be released).

ATTENTION

|

There are alternative ways to generate the same effects of the STAND-BY, INACTIVE and
TURN ON PLCx buttons. Commands generated by the local CPU or the remote CPU can
be used, as described, preliminary, in the Diagnostics, Commands and User Data Structure
section. A more detailed description of these commands can be found in the Redundancy
Commands section.

290

Q
=
G

\

6. REDUNDANCY WITH NX3030 CPU

6.3.16.2. PX2612 LEDs

The PX2612 LEDs are used to inform the redundancy state, as shown on the following table below:

Redundancy state LED ACTIVE | LED STAND-BY | LED INACTIVE
Not-Configured off off off
Starting on on on
Active on off off
Active (recent) blinking off off
Active (switching off the other CPU) on blinking off
Active (recent and switching off the other CPU) blinking blinking off
Stand-by off on off
Inactive off off on

Table 202: PX2612 LEDs

Each LED can be off, on or blinking. In case it’s blinking, it remains on for 0.5 seconds and off for the same time.

Note that there are four different animations for the Active state, due to the following features:

= At the first 2 seconds in Active state the ACTIVE LED blinks and remains on afterwards. This animation was created
because in the first instants of the Active state, the CPU won’t accept commands to get out from this state. For further
details regarding this Active CPU behavior, see Transition between Redundancy States and First Instants in Active State

sections

= In case this CPU is switching off the other CPU through its PX2612 relay, the LED STAND-BY blinks. It remains off

otherwise

6.3.16.3. PX2612 Relays

The PX2612 has two NO relays. The PLCA can control the RL B, to command the PLCB switching off. The PLCB can
control the RL A, to command the PLCA switching off.

Such switching off situations happen in exceptional situations, described in the Transition between Redundancy States

section.

6.3.17. Transition between Redundancy States

The following figure shows the redundancy state machine, illustrating all the possible transitions between redundancy

states.

291

altus

6. REDUNDANCY WITH NX3030 CPU

Not-
Configured

Active

Figure 172: Redundancy State Machine

The following sub-sections describe all these transitions, and the causes which can trigger them. In order to interpret
correctly this state machine functioning, some rules and sequences must be established:

» Transitions which originate from the same state must be analyzed in the sequence established by their number. E.g. the
transitions 2, 3, 4 and 5 are originated from the Starting state. In this example, the transition 2 is first analyzed, then 3, 4
and, finally, 5. In case the transition 2 is triggered, the transitions 3, 4 and 5 won’t be analyzed

= Inside a specific sub-section describing a transition, several conditions can trigger it. These conditions must be analyzed
in the sequence they appear in the sub-section. Any condition that goes true can cause a transition. If a condition causes
a transition, the next conditions don’t need to be analyzed

= Transitions can only be triggered if the CPU is on and the MainTask is executing. Otherwise the CPU is assumed to be
in the Not-Configured state

= In several cases, transitions caused by the PX2612 panel buttons are mentioned. It must be recalled there are alternatives
for these buttons, which are internal commands from one CPU or the other (via NETA / NETB). Such commands were
mentioned preliminary in the Diagnostics, Commands and User Data Structure section and are better described in the
Redundancy Commands section. In the following sub-sections, to simplify, these commands are not mentioned, but one
must remember they can cause the same transitions as the PX2612 button

6.3.17.1. Transition 1 — Not-Configured to Starting

The conditions of this sub-section must not be analyzed in case the other CPU is in Active
state and the projects are different. This CPU must remain in the Not-Configured state while
its project is different from the other CPU project, if the other is in Active state. This note
isn’t valid if the project automatic synchronization is disabled (see Project Synchronization
Disabling section), as in this case differences between the CPUs projects are allowed.

= A configuration request is already existent at the beginning of the Not-Configured state. This occurs in the moment the
CPU is switched on, and also other situations, described in the next sub-sections

= The STAND-BY button was pressed during the Not-Configured state. This causes a manual configuration request. The
user typically presses STAND-BY after failure repairing which had driven this CPU to the Not-Configured state

292

\

Q
=
G

6. REDUNDANCY WITH NX3030 CPU

6.3.17.2. Transition 2 — Starting to Not-Configured

= This CPU was turned off or restarted (Reset Warm, Cold or Origin) or its CPU went to Stop mode

= The identification register of this CPU is invalid (different than PLCA or PLCB)

= There are logic configuration errors in the project received from MasterTool IEC XE

= The other CPU is in the Active state and the firmware version in this CPU is incompatible with firmware version in it

= The other CPU is in Active state and the project in this CPU is different from the project in it. Besides going to the
Not-Configured state, a configuration request is made. This way, after the projects are synchronized, the CPU goes out
automatically from the Not-Configured state to the Starting state. This condition isn’t analyzed if the project automatic
synchronization is disabled (Project Synchronization Disabling section)

6.3.17.3. Transition 3 — Starting to Inactive

= NX4010 module not detected in the bus, or its microprocessor failure

= A synchronism channel (NETA or NETB) is in failure and this CPU knows this failure was caused by hardware compo-
nents or internal software (internal failures of NETA or NETB)

= The other CPU is in Active state. However, it’s not possible to synchronize the redundant data or the redundant forcing
list

» The other CPU state cannot be discovered through NETA / NETB, but this CPU can monitor the traffic in some config-
ured PROFIBUS networks in vital failure mode. This way, it looks like the other CPU is controlling the process, even
though NETA / NETB aren’t working to confirm it

= On the redundancy without PX2612 panel and without PROFIBUS network, in case other PLC’s state can’t be known
via NETA/NETB, but this PLC is receiving information that the other cluster’s state is ACTIVE through Keep Alive
packages received via NX3030’s NET1 or NET2

= Link loss occurred to an Ethernet Interface configured as Vital Failure.

6.3.17.4. Transition 4 — Starting to Active

= The other CPU is in Non-Active state. Before the transition is possible, this condition must remain true for some time,
higher to PLCB than PLCA. This way, at the moment PLCA and PLCB are simultaneously turned on; PLCA has priority
to take over in Active state

» The other CPU state can’t be discovered through NETA / NETB, and besides that this CPU can’t monitor traffic in any
PROFIBUS network configured as vital failure mode, or those networks weren’t created. Therefore, it really looks the
other CPU if off or out of execution. For safety reasons, besides switching to Active, this CPU turns the other off using
its PX2612 relay. This condition must be kept for a while before the transition is executed

6.3.17.5. Transition 5 — Starting to Stand-by

= The other PLC is in Active state. The redundant data synchronization and the redundant forcing list synchronization
services are working correctly

6.3.17.6. Transition 6 — Inactive to Not-Configured

= This PLC was switched off or restarted (Reset Warm, Reset Cold or Reset Origin) or its CPU went to Stop mode

= The STAND-BY button was pressed on the PX2612. Besides going to the Not-Configured state, a configuration request
is made. This way, the CPU goes out automatically from the Not-Configured state for the Starting state. The user
typically presses this button after repairing the failure which has driven the CPU to the Inactive state

= This PLC has its synchronization disabled and the project is different from the Active PLC, at the STAND-BY button
pressing, the PLC goes from Inactive to Not-Configured

6.3.17.7. Transition 7 — Active to Not-Configured
» This PLC was switched off or restarted (Reset Warm, Reset Cold or Reset Origin) or its CPU went to Stop mode

6. REDUNDANCY WITH NX3030 CPU

6.3.17.8. Transition 8 — Active to Inactive

NX4010 module not detected in the bus, or its microprocessor failure. This CPU knows the other CPU was in Stand-by
state before this failure happened. This condition isn’t analyzed in the first 2 seconds in Active state

This PLC has lost communication with another PLC through NETA and NETB due to an internal failure but knows the
other PLC was in Stand-by mode just before the failure occurred. This condition isn’t analyzed in the first 2 seconds in
Active state

This CPU can’t control all PROFIBUS networks configured in vital failure mode and knows the other CPU is in Stand-by
state. This condition isn’t analyzed in the first 2 seconds in Active state

This CPU detected a total failure in Ethernet networks configured in vital failure mode, and knows that the other CPU is
in Stand-by state

6.3.17.9. Transition 9 — Active to Stand-by

Both PLCs, for some reason, are in Active state and this conflict must be solved. The PLCA switches to Stand-by state
in case this conflict remains. The PLCB does the same after a delay smaller than PLCA. This way, in this case, PLCA
has priority to remain in Active state

The STAND-BY button was pressed and this CPU knows the other CPU is in Stand-by state. This condition isn’t
analyzed in the first 2 seconds in Active state

6.3.17.10. Transition 10 — Stand-by to Not-Configured

This PLC was switched off or restarted (Reset Warm, Reset Cold or Reset Origin)

The other PLC is in Active state and it’s known this PLC project is different from the Active PLC. Besides going to
the Not-Configured state, a configuration request is made. This way, after the projects synchronization, the PLC goes
automatically from the Not-Configured state to the Starting state. This condition isn’t analyzed if the project automatic
synchronization is disabled (Project Synchronization Disabling section)

The other PLC is in Active state and firmware version of this PLC is incompatible with the firmware version of the
Active PLC

6.3.17.11. Transition 11 — Stand-by to Inactive

NX4010 module not detected in the bus, or its microprocessor failure

The INACTIVE button was pressed on the PX2612. This is made typically in order to execute a programmed main-
tenance in the Non-Active CPU. Any programmed maintenance must be avoided in the Stand-by CPU, thus is recom-
mended to switch to Inactive mode

The other CPU is in Active state. However the redundant data synchronization or the redundant forcing list synchro-
nization services haven’t worked in last four cycles of the MainTask or the diagnostics synchronization service haven’t
worked in the last two cycles of the MainTask

The other PLC is in Active state. However, this PLC can’t monitor traffic in every PROFIBUS network configured as
vital failure mode

The other CPU is in Active state. However, this CPU detected failure in Ethernet ports configured as vital failure mode

6.3.17.12. Transition 12 — Stand-by to Active

The other CPU state is unknown due to NETA and NETB failures. In this case, besides going to Active state, for safety
reasons, this CPU switches off the other CPU using the PX2612 relay. When the Redundancy does not use PX2612
panel and there isn’t PROFIBUS DP, the CPU uses a Keep Alive mechanism through NX3030’s NET1/NET2 ports, to
intercommunicate the state between PLCs and detect that the ACTIVE one isn’t controlling the process anymore.

The other CPU state is known and different than Active

6.3.18. First Instants in Active State

In the first 2 seconds in Active state, as already described in PX2612 Redundancy Command Panel Functions section, the
LED ACTIVE blinks and remains on after this time has passed.

While the LED ACTIVE blinks, several transitions which, usually, could take the CPU from the Active state, aren’t
analyzed (see previous sub-sections that define transitions from the Active state). E.g. during this time, it doesn’t work to press
the STAND-BY button to try and make the CPU go to Stand-by state.

Only two conditions allow the CPU to go out of the Active state while the LED ACTIVE blinks. They are the following:

6. REDUNDANCY WITH NX3030 CPU

= This PLC was switched off or restarted (Reset Warm, Reset Cold or Reset Origin), causing a transition to Not-Configured
state

= Both PLCs, for some reason, are in Active state and this conflict must be solved. The PLCA switches to Stand-by state
in case this conflict remains. The PLCB does the same after a delay smaller than PLCA. This way, in this case, PLCA
has priority to remain in Active state

Furthermore, in the very first instants that a PLC assumes the Active state, some non-redundant diagnostics may not be
valid, such the diagnostics of the NX5000 and NX5001 modules. The method used to ignore the diagnostics possibly invalid
is described in section Reading Non-Redundant Diagnostics.

6.3.19. Common Failures which Cause Automatic Switchovers between Half-Clusters

In this section, the more common failures which, automatically, cause a switchover from the Active CPU to Non-Active
and from Stand-by CPU to Active CPU are listed. These failures trigger a sub-group of those transitions examined in the
Transition between Redundancy States section.

= Power supply fault in the Active CPU. It’s important that both CPUs have redundant power supplies, in order to avoid
that a power supply failure doesn’t affect the Stand-by CPU

= NX8000 power supply fault in the Active CPU
= Rack bus failure (NX9000, NX9001, NX9002 or NX9003) in the Active CPU
= Failures in the NX3030 CPU from the Active CPU, such as:

* Watchdog

* Restart (Reset Warm, Cold or Origin)

» Stop

* Failure in the bus interfaces in one or both synchronization channels NETA and NETB
= Failures in the NX4010 from the Active PLC, such as:

* Not recognized module in the NX3030 CPU bus

* Failure in the NX4010 microprocessor which prevents the NETA/NETB and the PX2612 control panel (buttons,
LEDs and relay) internal diagnostics updating

* Internal failures that affect one or both synchronization channels NETA and NETB

= Active PLC PROFIBUS network total failure, in case this network is configured in vital mode. In case the PROFIBUS
network is redundant, both composing networks must fail (double failure)

= Total failure of an Ethernet network in active CPU, if this network is configured with vital failure. If the Ethernet network
is redundant, both networks that compose it must be faulty (double failure)

6.3.20. Failures Associated to Switchovers between Half-Clusters Managed by the User

Among the described transition in the Transition between Redundancy States section, some turn possible the user to manage
switchovers between half-clusters, due to failures that don’t generate automatic switchovers.

There are very particularly cases which depend on the philosophy of each client. E.g.: a case where the SCADA system
loses the communication with the Active CPU, but keeps communicating with the Stand-by CPU.

Some clients would rather to have a manual switchover, where the operator presses the PX2612 STAND-BY button, to the
Active CPU. The switchover causes a communication retry with the new Active CPU.

An alternative solution would be to cause a switchover by sending a command from the SCADA system to the Stand-by
CPU, which would transmit to the Active CPU through NETA/NETB, using the RedCmdLocal (Stand-by CPU) and RedCm-
dRem (Active CPU) data structures to transport a command equivalent to the PX2612 STAND-BY button.

It would be also possible the Active CPU detect its communication lost with the SCADA system itself and to activate a
command in the RedCmdLocal, equivalent to the PX2612 STAND-BY button. This would be a totally automatic solution with
no operator intervention that would be typically made in the ActivePrg POU.

Through data structures described in the Diagnostics, Commands and User Data Structure section, it’s possible to exchange
diagnostics and commands between the half-clusters through NETA and NETB. This way, the user can execute special redun-
dancy managing for failures that normally wouldn’t cause any switchover. Further details regarding these data structures are
offered in the following sections:

= Redundancy Diagnostics Structure
= Redundancy Commands
= User Information Exchanged between PLCA and PLCB

6. REDUNDANCY WITH NX3030 CPU

Below, is exemplified how the user can manage failures and execute a switchover due to an error in the Ethernet interfaces
from the Active PLC (this code should be used in the ActivePrg POU):

//Verify if NIC Teaming is enabled.
IF ((DG_NX3030.tDetailed.Ethernet .NET1l.szIP = '0.0.0.0') OR (DG_NX3030.tDetailed

.Ethernet .NET2.szIP = '0.0.0.0")) THEN

//NIC Teaming enabled: error in two NETs to execute a switchover.
IF (DG_NX3030.tDetailed.Ethernet.NET1.bLinkDown AND DG_NX3030.tDetailed.Ethernet

.NET2 .bLinkDown) THEN

//Change the local PLC to StandBy..
DG_NX4010.tRedundancy.RedCmdLoc.bStandbyLocal := TRUE;

END_TF

ELSE

//NIC Teaming disabled: error in one of NETs to execute a switchover.

IF (DG_NX3030.tDetailed.Ethernet.NET1l.bLinkDown OR DG_NX3030.tDetailed.Ethernet.

NET2.bLinkDown) THEN

//Change the local PLC to StandBy.
DG_NX4010.tRedundancy.RedCmdLoc.bStandbyLocal := TRUE;
END_TIF

END_TIF

When two Ethernet interfaces form a NIC Teaming pair, the inactive interface will always
have the IP address 0.0.0.0. This isn’t a valid IP and is no possible to configure manually an
interface with this address.

6.3.21. Fault Tolerance

The main objective of a redundant CPU is the system availability increase. The availability is the ratio between the time
while the system is working properly and the total time since the system has been implemented. For instance, if a system was
implemented 10 years ago and during this time, wasn’t working due to failures for a year, then its availability was only 90%.
This kind of availability is usually unacceptable for critic systems, where 99.99% availability is required, or even more.

In order to reach this availability level, several strategies are necessary:

Utilization of more reliable components (with high MTBF or Mean Time between Failures), contributing for the MTBF
increase of the system as a whole

Utilization of redundancy for, at least, the most critical components or components with smaller MTBF, in such a
way that a component failure can be tolerated without stopping the system. If the redundancy is implemented through
components duplication, it will be necessary that both fail for the system as a whole become unavailable

High diagnostics coverage, especially in redundant components. The component redundancy isn’t very useful for the
availability increase when is not possible to discover which component failed. In this case, the first failure in one
component still doesn’t drop the system, but remains hidden, until the second failure occurs, dropping the system,
as the first failure wasn’t yet repaired. The failures can be classified between diagnosable and hidden. It’s strongly
recommended that all redundant components failures are diagnosable

It’s also important that non-redundant components have wide diagnostics coverage, as, frequently, the system can con-
tinue working even with a non-redundant component failure. The component may not being requested, e.g. a relay with
NO contact which rarely has its coil activated, doesn’t have its failure detected until the moment the system requires its
closing

Low repair time for non-redundant components. A non-redundant component failure can drop the system, and during
the repair, the system will be unavailable

Possibility of repairing or substituting a redundant component without stopping the system. If this possibility exists, a
great availability increase it got. Otherwise, a stop must be programmed in order to substitute the component and the
repair time is computed as unavailable time

Low repair time for redundant components. A redundant component failure doesn’t drop the system, but during its
repair, a failure in its redundant pair could happen. For this reason, it’s important that the failure is repaired quickly after
diagnosed. The higher the repair time, the higher the probability of a second failure to occur in the redundant component
during this time, what would drop the system. Therefore, the higher the repair time, the lower the system availability

296 altus

——

6. REDUNDANCY WITH NX3030 CPU

» Program periodic offline tests in components in order to detect not automatically diagnosable failures by the system.
The objective is to detect hidden failures, especially in redundant components or simple components which aren’t being
requested (e.g. a security relay). Offline tests, sometimes, imply in system stopping what decreases the availability.
Normally, special situations, such as process programmed maintenance, are used for that purpose. The higher the period
between offline tests, the higher the time which the failure may remain hidden, and the higher the probability of a failure
to damage the system, in other words, the smaller the availability

These principles were considered in the redundant CPU project using NX3030.

The next sub-sections analyze several failure types and how they are tolerated or not, and if there are switchovers associated
to the tolerated failures.

6.3.21.1. Simple Failure with Unavailability

Some components, as they aren’t doubled, don’t even tolerate a simple failure without causing some kind of unavailability.
In a redundant CPU using CPU NX3030, this is related to the following components:

» PROFIBUS remotes (slaves) in a non-redundant PROFIBUS network
= Ethernet remotes (slaves) in a non-redundant network
= [/O Modules

The failure intolerance of a non-redundant PROFIBUS network can be solved if a redundant PROFIBUS network is used,
which is advisable in systems that demand a high failure tolerance. Figure 159 shows an example of a redundant PROFIBUS
network architecture. Likewise intolerance to failure of a non-redundant Ethernet network can be solved by using a redundant
Ethernet network configuration with NIC Teaming.

Regarding the I/O module unavailability, it must be observed that it doesn’t imply total system unavailability. It constitutes
a partial unavailability, only in the control mesh that uses this I/O module.

Even though there’s no redundancy prevision for I/O modules, the user application can manage it in special cases. E.g. the
user can insert 3 analog input modules in 3 different PROFIBUS remotes, and implement a vote scheme between analog inputs
triples, for a critic system. However, as mentioned, such solutions must be managed by the user. There’s no automatic support
for them. Such solutions, generally speaking, also imply in the field transducers and actuators redundancy.

6.3.21.2. Simple Failure without Unavailability Causing a Switchover

Some redundant components tolerate simple failures without causing unavailability, but cause switchover:

= Racks (NX9000, NX9001, NX9002 or NX9003)

= Power Supply (NX8000)

= CPUs (NX3030)

= NX4010 modules

= NX5001 modules (PROFIBUS masters) in non-redundant PROFIBUS network configuration
= NX5000 modules (Ethernet) in configurations without NIC Teaming

= PROFIBUS slave interface in a redundant remote (PO5063V5, PO5065, NX5210 or AL-3416). In this case, different
from the previous, the switchover happens inside the remote, between the PROFIBUS A and B networks.

In case of failure of the CPU NX3030 or NX4010 module in architectures where panel
PX2612 or PROFIBUS network is not used, the CPU will remain in its current state. In this
case, if the failure occurs in the half-cluster active, system downtime occurs.

6.3.21.3. Double Failure without Unavailability Causing a Switchover

Some components are doubled in each half-cluster, this way, before causing a switchover, both must fail:

= NX5001 modules (PROFIBUS masters) in redundant configuration, configured in vital failure mode.
= NX5000 modules (Ethernet) in configurations with NIC Teaming (redundancy managed by the user).

297

Q
=
G

\

6. REDUNDANCY WITH NX3030 CPU

6.3.22. Redundancy Overhead

A redundant application implies on an application processing time increase, when compared to the necessary time for a
non-redundant equivalent application.

This additional time happens due to cyclic synchronization services execution, described in the Cyclic Synchronization
Services through NETA and NETB section, and a smaller time for the redundancy management (state machines, etc.). The
total additional time due to redundancy (redundancy overhead) is estimated by MasterTool, after the redundant CPU project
compiling.

MasterTool calculated overhead consider an empty redundant variables forcing list.

In addition, the user must define a range for MainTask regarding:

= The necessary time to execute the main POUs (NonSkippedPrg and ActivePrg). This time usually is measured after the
project development (with the redundancy additional time off)

= The time required for detection and generation of internal points events (for example, the occurance of 1000 events of
analog points with deadband on the same cycle can take up to 30 ms)

= Some MainTask cycle looseness, for other CPU tasks execution (operational system, I/O PROFIBUS drivers, MODBUS,
etc.). This looseness percentage can vary according to the requested performance from these other tasks. E.g. if
the MODBUS communication with the SCADA system needs to allocate too much processing to reach a satisfying
performance, this looseness must be increased

Depending on the memory alignment, the number of bytes used in the redundancy overhead
calculus might be higher than the total amount of bytes declared in the variables.

6.4. Redundant CPU Programming
6.4.1. Wizard for a New Redundant Project Creation

In order to create a new redundant project, the File/New Project command must be used and the MasterTool Standard
Project selected.

Initially, the user must inform the desired name for the project and the directory where he desire to save it, as shown on
figure below.

298

Q
=
G

\

6. REDUNDANCY WITH NX3030 CPU

=] MNew Project
Categories Templates
----- {1 (General) “‘ 3
K=
Empty Library MasterToaol

Standard Project

Creates a new project, automatically induding the corresponding CPU and selected POUs and Tasks.

Mame MextoRedundant

Location (o] v

Figure 173: New Project

Next, the Wizard which generates the redundancy project run some questions for the user, regarding the desired configura-
tion that must be answered successively.

The first point to be defined is the initial configuration for the half-cluster hardware:

= Select device category: NX3030 can be selected in two categories All Devices or in Modular Controllers
= Select the CPU model: As the redundancy is implemented only in NX3030, it must be selected by the user

= Select the rack model: There are four rack available models and the choice depends on the module quantity used in the
redundancy. For MasterTool is important the rack size according to the configured networks quantity (next wizard item)

= Select the power supply model
= Select the redundancy configuration. For a redundant project is needed to choose With Redundancy option

= Select the operation mode of redundancy. In this case the options in operation are with or without redundancy panel
(PX2612)

= Select if the OPC DA communication option will be enabled or not
= Select if will be used bus expansion redundancy

299

Q
=
G

\

6. REDUNDANCY WITH NX3030 CPU

MasterTool IEC XE Standard Project X

; You are about to create a new MasterTool IEC XE Standard Project. Choose the following options and the wizard will create a
! project as you decide.

Choose the device category:

All Devices ~
Choose the device model:

NX3030 {Altus 5.A.) - CPU, 2 Eth., 2 Serial, Memory Card, Rack Expansion and Redundancy ~
Choose the rack model:

MX2003 (Altus 5.4.) - 24-5lot Backplane Rack w

Choose the power supply model:
MNXBO0O (Altus 5.A.) - 30 W 24 Vdc Power Supply Module ~

Choose the redundancy configuration of Half-Cluster:
With Redundancy ~

Choose the operation mode of redundancy Half-Cluster:
With redundancy panel w

Choose the configuration of OPC DA communication:
Disabled V

Choose the bus expansion redundancy configuration:
Without Redundancy ~

Create directory for project

MNext > Cancel

Figure 174: Hardware Initial Configuration

After, the user must define the communication networks used in the redundant application:

= Select device category: NX3030 can be selected from two categories All Devices or Modular Controllers

= Select the number of PROFIBUS networks: By the Wizard, can be created up to four PROFIBUS networks, and they
can be single or redundant. It is important stress that this architecture proposed by the Wizard is typical. After that, can
be created more PROFIBUS networks, respecting the maximum limit of four PROFIBUS Master modules, NX5001, in
each half-cluster

= Choose the type of PROFIBUS networks:
e There’s none (no NX5001 module allocated)
 Single Network (allocates one NX5001 module)
¢ Redundant Network (allocates two NX5001 modules)
= Choose the type of Ethernet network of the CPU
* Single Network with Failure Mode Disabled (do not generates switchover in failure case)
* Single Network with Failure Mode Enabled (generates switchover in failure case)

* Redundant Network with Failure Mode Disabled (operates in conjunction with the other interface and do not
generates switchover in failure case)

* Redundant Network with Failure Mode Enabled (operates in conjunction with the other interface and generates
switchover in failure case)

= Choose the amount of Ethernet networks: In this case the Wizard allows the user to create up to four single networks, or
up to three redundant networks, or none. It’s important to stress that this is only the architecture proposed by the Wizard.
After that, MasterTool allows the creation up to six networks total (three redundant maximum), always respecting the
maximum limit of six Ethernet modules, NX5000, in each half-cluster.

= Select the Ethernet network type:
¢ There’s none (no NX5000 module allocated)

* Single Network with Failure Mode Disabled (allocates one NX5000 and do not generates switchover in failure
case)

 Single Network with Failure Mode Enabled (allocates one NX5000 and generates switchover in failure case)

* Redundant Network with Failure Mode Disabled (allocates two NX5000 and do not generates switchover in failure
case)

¢ Redundant Network with Failure Mode Enabled (allocates two NX5000 and generates switchover in failure case)

300 altus

——

6. REDUNDANCY WITH NX3030 CPU

MasterTool IEC XE Standard Project

j Choose the netwark configuration and the wizard will create andfor configure the following objects within the project.
5

PROFIBUS
Choose the number of netwarks: 1 =
Choose the type of network 1: Single Network v
CPU Ethernet Interfaces
Choose the type of network 1: Single Network with Failure Mode Disabled Y]
Choose the type of network 2: Single Network with Failure Mode Disabled w
Expansion Ethernet Interfaces
Choose the number of networks: 1 >
Choose the type of network 1: Redundant Network with Failure Mode Enabled W
< Previous MNext =

Figure 175: Communication Networks Configuration

Cancel

Then the project profile and the standard language must be selected for the program creation:

= Select the project profile: It’s only possible to use the Single project profile for the redundancy; hence the selection

option is disabled

= Select the default language for all programs: The language selected by the user is the standard for all programs, but any

other can be used for a specific POU

MasterTool IEC XE Standard Project
j Choose the project profile configuration and the wizard will create the following objects within the project.
5
Choose the project profile:
Single

Choose the default language for wizard created programs:
Structured Text (ST)

About the project profile

This project template indudes only one task and its POU is already fully defined as shown below. Not necessary careful with

the scheduling of tasks.

Task FOU Priority Type Cycle Time Event
MainTask MainPrg 13 Cyclic 20 ms
Detail...

< Previous Cancel

Figure 176: Project Profile and Standard Language

To finish, the user must select the program language common and associated to the redundancy:

301

]
=
G

\

6. REDUNDANCY WITH NX3030 CPU

= Program associated with MainTask (MainPrg): It must be, obligatory, in ST language, as MasterTool disables the other
options
= Programs associated with redundancy Main Tasks

MasterTool IEC XE Standard Project

Hj Choose the language and the wizard will create the following objects within the project.

Common Task Programs (Preempt Free Tasks)

Programs associated with Main Task:
MainPrg in:

Structured Text (5T)

StartPrg in:

Structured Text (ST)]
Programs assodiated with redundancy Main Tasks:

MonSkippedPrg in:

Structured Text (5T)

ActivePrg in:

Structured Text (ST)]

< Previous ext Finish

Figure 177: Specific Programs Language

ATTENTION

The ActivePrg and NonSkippedPrg POUs are created automatically, empty, in language se-
lected on the previous questions. Other POUs which are created manually by the user can
be used in any available language, except in redundant POUs which can’t be written in SFC
language as it uses the IEC timer as background. For further information see Limitations on
a Redundant PLC Programming.

ATTENTION

The MainPrg POU will always be automatically generated in ST language, and cannot be
changed by the user. This POU calls the ActivePrg (only in the Active PLC) and Non-
SkippedPrg (in both PLCs) POUs.

After receiving the answers for the previous questions, the Wizard generates the main project, defining a half-cluster with
the following initial hardware configuration:

= Selected rack

= Power supply NX8000 (positions 0 and 1)

= NX3030 CPU (positions 2 and 3)

= NX4010 modules (positions 4 and 5) and Panel PX2612 if selected.

= After the NX4010 module, NX5001 are inserted to implement PROFIBUS network with the features previously inserted
by the user

= After the NX5001 modules, NX5000 are inserted to implement Ethernet network with the features previously inserted
by the user

302

Q
=
G

\

6. REDUNDANCY WITH NX3030 CPU

6.4.2. Half-Clusters Configuration

The Wizard is always used to generate the first version of a redundant project. This guarantees the initial version is
generated quick and correctly.

However, it’s possible that some modifications are necessary in a half-cluster, such as the insertion of new NX5001 and
NX5000 modules that can be executed changing the half-cluster configuration screen. The following sections present how to
insert and configure the modules NX5000, NX5001 and NX4010.

Some rules and precautions must be followed for a redundant project, as described in the following sections.

6.4.2.1. Fixed Configuration in the 0 to 5 Rack Positions
In the O to 5 positions of the selected rack, the following modules must be always installed:

= Power supply NX8000 (positions 0)
= NX3030 CPU (positions 2)
= NX4010 module (positions 4)

These modules must not be removed from the original project generated by the Wizard.
Any different configuration in these positions results in an error displayed by MasterTool at the project compilation.

6.4.3. Ethernet Ports Configuration in the CPU NX3030 (NET 1 and NET 2)
6.4.3.1. IP Address Configuration
The figure below presents the CPU NX3030 NET 1 port configuration (the screen for NET 2 port configuration has a

subgroup of these parameters). In order to open this screen, a double click must be executed on NET 1 or NET 2, below the
CPU NX3030 in the device tree.

Configuration (Bus) L MNET1 X
Cluster IP Addressing

IP Address Active | 192 . 168 . 15 . 1
IP Address PLC A | 192 . 168 . 15 . &9
IF Address PLCE | 192 . 168 . 15 . 70
Subnetwork Mask | 255 . 255 . 255 . O

Gateway Address | 192 . 168 , 15 . 253

Advanced...

Figure 178: Ethernet NET 1 Port Parameters

Next the basic parameters of the NET 1 and NET 2 interfaces must be edited. The address has to be set according to the
Active IP Change method, as described in Principles of Operation - IP Change Methods - Active IP.

ATTENTION

The NET 1 and NET 2 interfaces IP addresses, as the Gateway Address, must belong to the
same subnet.

|

ATTENTION

The NET 2 configuration screen has the same structure as the NET 1 configuration screen,
but it doesn’t have the checkbox Redundancy of Communication, neither the NIC Teaming
configuration parameters.

303

Q
=
G

\

6. REDUNDANCY WITH NX3030 CPU

6.4.3.2. NIC Teaming between NET 1 and NET 2

The Advanced option on the NET 1 configuration screen opens a new configuration screen, which defines if NET 1 will
be redundant. In case the checkbox for Redundancy of Communication is marked, the NET 1 and NET 2 interfaces form
a redundant pair with NIC Teaming, as described in the Principles of Operation - Redundant Ethernet Networks with NIC
Teaming section. Automatically, other parameters are enabled and must be configured:

= Period of Redundancy Test (ms): Period to transfer the communication test frame between the two NETs. It can be
configured with values between 100 and 9900

= Retries of Redundancy Test: Maximum number of times the NET, which has sent the frame, will wait for an answer. It
can be configured with values between 1 and 100

» Switching Period (s): Maximum time the Active NET will wait for any package. It can be configured with values
between 1 and 25

Advanced Ethernet Settings

Mode
Redundancy of Communication

Redundancy of Communication

Period of Redundancy Test (me) 200 =
Retries of Redundancy Test 4 =
Switching Period (g) 10 =
Failure Made

[] Switchoverin Case of Ethemet Failure

Carc

Figure 179: Ethernet Advanced Configuration

In case the answer time for the Redundancy Test reaches the Period of Test times the Number of Retries and the active
interface remains for a while longer than the Switching Period without receiving any package, a switchover will occur, turning
active the interface that was inactive. It is important to stress that there is a delay between the failure detection and the
activation of the inactive interface, due to the time necessary to interface configuration. This delay could be up to a few dozens
of milliseconds.

When one of the NETs is active, it assumes the IP address configured, and the inactive NET remains with its configured IP
Address, Subnetwork Mask and Gateway Address parameters blank in the CPU diagnostics.

When a Reset Origin is performed in a CPU configured with NIC Teaming enabled for local
Ethernet interfaces (NET 1 and NET 2), only the last active interface before the reset will be
accessible. After the reset command, the accessible interface could be viewed in the CPU’s
Informative and Configuration Menu.

6.4.3.3. Vital failure setting in NET 1 and NET 2

The Advanced option in the setup screen of the NET 1 and NET 2 interfaces, opens a configuration screen where in addition
to enable communication redundancy is also possible to configure if the interface will generate a switchover in case of failure
as described in Principles of Operation - Ethernet Interfaces Use with Vital Fault Indication.

When configured in conjunction with the NIC Teaming redundancy, failure is considered vital failure, when a fault occurs
in NET 1 and NET 2 interfaces.

304 altus

——

6. REDUNDANCY WITH NX3030 CPU

6.4.4. NX5001 Modules Configuration
6.4.4.1. Insertion or Removal of NX5001 modules

NX5001 modules can be inserted or removed from the half-cluster rack. To execute this operation correctly, one must be
aware of the following rules:

= The number of NX5001 modules in each half-cluster may vary between zero and four

= It can be defined up to 4 simple PROFIBUS networks or 2 redundant PROFIBUS networks, respecting the limit of 4
PROFIBUS Master NX5001 modules in each half-cluster

= When a PROFIBUS network is simple, it needs a single NX5001 module in each half-cluster. When it’s redundant, it
needs 2 NX5001 modules in each half-cluster

= Two NX5001 modules used to form a redundant PROFIBUS network must occupy side by side positions in the rack

= The NX5001 modules quantity in the rack must be compatible with the number of existent PROFIBUS networks and
with the redundancy attribute of each network, on other words:

* 0 x NX5001: No PROFIBUS network
¢ 1 x NX5001: One simple PROFIBUS network
2 x NX5001: In this case there are two options:

o Two simple PROFIBUS network
o One redundant PROFIBUS network

3 x NX5001: In this case there are two options:
o Three simple PROFIBUS networks
o One redundant PROFIBUS network and one simple PROFIBUS network
4 x NX5001: In this case there are three options:
o Four simple PROFIBUS networks
o One redundant PROFIBUS network and two simple PROFIBUS networks
o Two redundant PROFIBUS networks

After inserting or removing the NX5001 modules, the configuration of the NX5001 modules remaining in the rack must
be checked.
6.4.4.2. NX5001 Modules Parameters Adjust

Each NX5001 module used in a simple PROFIBUS network, or each redundant pair of NX5001 used in a redundant
PROFIBUS network, has the following parameters to be adjusted.

Configuration (Bus) [T mxs001 x
General
Mame Value Comment

Process Data %%Q Start Address of Module Diagnostics Area 83000 Define starting address of Module Diagnostics Area.

%0 Start Address of Slaves Diagnostics Area 65536 Define starting address of Slaves Diagnostics Area.
Module Parameters MNetwork Redundancy True Enable or disable PROFIBUS Metwork Redundancy.

Failure Mode True Enable or disable switchover in case of PROFIBUS module failure.
IS TR Allocate Diagnostic Area According to the Device Description False Allocate diagnostic area size according to the value of max_diag_data_len parameter of GSD.

Bus IEC Objects

Figure 180: NX5001 Redundancy Parameters

For grouping two NX5001 modules in a redundant PROFIBUS network, a double click must be executed on an ungrouped
NX5001 module which has another ungrouped NX5001 module at its right in the rack. Next the parameter Network Redun-
dancy, available at the tab Module Parameters, must be marked as TRUE, as shown on the Figure 180. In order to ungroup
it, the same procedure must be followed, but marking the parameter as FALSE. If this parameter is marked as TRUE, the DP
parameters and the NX5001 parameters at its right are blocked for edition.

6. REDUNDANCY WITH NX3030 CPU

In case of redundant networks, only the parameters of the NX5001 to the far left on the bus
must be adjusted, while the NX5001 at the right remain blocked for edition. Some network
parameters are identical to the other network while others are calculated automatically from
network parameters of the left NX5001.

It’s recommended for the configured address for a NX5001 master in a redundant PLC to be 2, as the master NX5001
address in the Non-Active PLC is decremented one unit, thus the NX5001 master address results 1.

Besides that, it’s important to remember:

= The addresses from 3 to 125 are usually used for PROFIBUS slaves
» The 0 address is frequently used for device configuration and diagnostics

» The address 1 is reserved to be taken, dynamically, by the PROFIBUS master in the Non-Active PLC (PROFIBUS
master in passive mode)

= The 126 address is frequently used for slave devices when comes from the manufacturer
= The 127 address is used for broadcast frames

In the next project compilation, MasterTool check the possible errors the user may have made at inserting or removing
NX5001 modules manually.

Important to note that during the execution of a project previously configured with redundant NX5001 modules, bit O
Command (Channel Enable Interface %QXn.0 at Bus I/O Mapping tab) is handled by the redundant application. The interfaces
must remain qualified throughout the program. Thus, a command run by the user to disable an interface will not run the way
it’s expected. For example, if an interface has the status of this bit changed from TRUE to FALSE on an active CPU, this will
not be interpreted as a failure that would take the CPU Active for the Inactive state. In this case, the CPU will remain in Active
and the other CPU that will go to the Inactive state. For these reasons, this command bit should not be manipulated by the user
in a redundant application.

For further information regarding PROFIBUS networks configuration, see PROFIBUS-DP NX5001 Utilization Manual.

6.4.4.3. PROFIBUS Remotes Configuration

To configure PROFIBUS remotes under a NX5001 master, the PROFIBUS-DP NX5001 Master Utilization Manual must
be consulted, together with the following manuals:

= Ponto Series Utilization Manual

= PROFIBUS PO5063V1 Head and Redundant PROFIBUS PO5063V5 Head Utilization Manual
= PROFIBUS PO5064 Head and Redundant PROFIBUS PO5065 Head Utilization Manual

= HART over PROFIBUS Network Utilization Manual

For a redundant system we must pay attention to the configuration of the watchdog parameter from the PROFIBUS remote.
In case that, in the remote configuration screen, the Watchdog control checkbox is checked, the Time field needs to be correctly
configured. There are two options to configure the Time and we must use the bigger time between:

= WT >1x 2+ 500ms; and
s WT >1x3;

Where WT is the watchdog time and I is the MainTask configured interval.

Watchdog
Watchdog control

Time {ms) 1000 =

Figure 181: Watchdog Configuration of a PROFIBUS Remote

306

Q
=
G

\

6. REDUNDANCY WITH NX3030 CPU

6.4.5. NX5000 Modules Configuration
6.4.5.1. NX5000 Modules Insertion or Removal

NX5000 modules can be inserted or removed from the half-cluster rack. To execute this operation correctly, one must be
aware that the number of NX5000 modules in each half-cluster can vary between zero and six. Care must be taken to the fact
that modules which form a redundant NIC Teaming pair must be inserted in side by side positions in the rack.

In the next project compilation, MasterTool check the possible errors the user may have committed at inserting or removing
NX5000 modules manually. For instance, if the user inserted more than 6 NX5000 modules, an error occurs.

The interface of each module will be identified as NET 1, as they are identified physically on the product. In case the user
adds manually NX5000 modules in the bus, the identification occurs the same way as the Wizard.

After inserting or removing the NX5000 modules, the configuration of the NX5000 modules remaining in the rack must
be checked.

6.4.5.2. NX5000 Modules Configuration

For each NX5000 module in a redundant PLC, the address parameters must be adjusted as described in the Principles of
Operation - IP Change Methods section, which can be accessed through a double click on the NET 1 interface, below each
NX5000 module placed on the devices tree.

In case two consecutive modules form a redundant NIC Teaming pair, only the basic param-
eters of the left NX5000 should be edited, the right NX5000’s parameters edition will be
blocked.

6.4.5.3. NX5000 Modules Grouping with NIC Teaming Redundancy

The NX5000 modules, as the CPU NX3030 and NX3020 NET 1 interface, present a screen of advanced configuration
which defines if the module forms a redundant NIC Teaming pair with the module at its right. The configuration is made as
described in the NIC Teaming between NET 1 and NET 2.

To group two NX5000 modules with a redundant pair, the following conditions must be true:
= Both NX5000 modules must be inserted in close positions in the rack.

At doing this the right module has its parameters edition blocked and the left module parameters turn to be the same to
both modules. Unmarking the checkbox Redundancy of Communication at the left module causes the modules’ separation,
making them behaves as individual modules without NIC Teaming redundancy again.

6.4.5.3.1. Failure Vital Setting

The NX5000 modules as well as the NET 1 and NET 2 interfaces allow you to configure if the interface will generate a
switchover in case of failure, as described in Principles of Operation - Ethernet Interfaces Use with Vital Fault Indication.

When configured in conjunction with the NIC Teaming redundancy vital failure will be considered when failure occurs in
both modules of the redundant pair.

6.4.6. NX4010 Redundancy Configuration

The configuration regarding the %I, %Q and %M redundant variables can be accessed through a double click on the
NX4010 module, following the selection of the tab Redundancy Parameters.

To understand these parameters the sections Redundant and Non-redundant %I Variables, Redundant and Non-redundant
%Q Variables and Redundant and Non-redundant %M Variables must be read.

The following parameters must be configured:

307

Q
=
G

\

6. REDUNDANCY WITH NX3030 CPU

Configuration Description | Default | Options
Memory (% M)
Redundancy %M Memor Redundant %M memory ini- .
Offset ¢ ’ tial address N 0 0 (disabled)
Redundancy %M Memory Redundant %M memory 0 010 65536
Length size
Memory (%]1)
Redundancy %1 Memor Redundant %I memory ini- .
Offset ! ! tial address ’ 0 0 (disabled)
Redundancy %I Memory Redundant %I memory size | 16384 0 to 81920
Length
Memory (% Q)
Redundancy % Q Memory | %Q redundant memory off-
Offset Reserved For I/0 | set reserved for I/O drivers | O 0 (disabled)
Drivers initial address
Redundancy % Q Memory | %Q redundant memory off-
Length Reserved For I/O | set reserved for I/O drivers | 16384 0 to 81920
Drivers size
Redundancy %Q Memory | %Q redundant memory off-
Offset Reserved For Diag- | set reserved for diagnostics | 65536 0to 81919
nostics initial address
Redundancy %Q Memory | %Q redundant memory off-
Length Reserved For Di- | set reserved for diagnostics | 16384 0 to 81920
agnostics size

Table 203: NX4010 parameters

6.4.7. 1/0 Drivers Configuration

The configuration of I/O drivers, at first, isn’t different in relation to a non-redundant CPU.

What can be observed is that some I/O drivers have commands which allow its use in a redundant CPU, but it doesn’t imply
in configuration differences. These commands, normally, must be executed in the NonSkippedPrg program. E.g. a MODBUS
RTU master driver in a RS-485 serial network must be disabled in a non-Active CPU using the code inserted by the user in
NonSkippedPrg. More information regarding administration of MODBUS driver in a redundant system can be found in the
MODBUS Instances Managing in Redundant System section.

In the case of PROFIBUS network, there are also special different commands for the CPUs in Active and Non-Active states.
In this case, however, the redundancy management executes such commands automatically, without any user management.

To configure PROFIBUS I/O remotes, including remotes and I/O modules, see NX5001 Modules Configuration section
from this manual.

6.4.8. MainTask Configuration

The configuration screen associated to the only task of a redundant CPU, called MainTask, which is cyclic, can be accessed
through a click on the MainTask in the Device Tree.

Two parameters must be adjusted on this screen:

» MainTask Interval
= Watchdog Time

Furthermore, the screen shows an estimative of the necessary time to manage the redundancy, calculated by MasterTool.
Such estimative is only reliable after the project is complete, with all POUs developed and redundant memory areas defined.
Several considerations must be taken in order to adjust correctly the MainTask cycle time:

= The interval time must be sufficiently low to allow the proper process control, taken in account all control feedback times
= The interval time must be high enough for allowing, at least, the sum of the following times:

* The NonSkippedPrg and ActivePrg POUs maximum execution time, together

308 altus

6. REDUNDANCY WITH NX3030 CPU

* The necessary time to manage the redundancy (redundancy overhead)
= Besides this, the interval time must have an additional looseness necessary for the other processes execution times
(PROFIBUS communication, Ethernet communication with SCADA systems, etc...)
MasterTool has conditions of calculating the necessary time for redundancy management (redundancy overhead), after the
project is finished (all developed POUs and redundant memory areas defined).

Regarding the NonSkippedPrg and ActivePrg POUs execution maximum time, they are possible to be measured after these
POUs are already developed. Initially, MasterTool estimates 10 ms for these two POUs maximum time, together, but the user
must revise this field afterwards, when measuring using the final project.

After each compilation, MasterTool sums the redundancy overhead calculated with the parameter which informs the POU
times (NonSkippedPrg and ActivePrg), and verifies if the minimum looseness parameterized is being obeyed.

E.g.

= Parameters configured in the MainTask screen:
* MainTask Interval: 100 ms
¢ POUs NonSkippedPrg + ActivePrg estimated time: 10 ms
* Minimum tolerance: 30%

= Calculated Overhead for redundancy: 50 ms

In this case, the total time used is 60 ms (10 ms + 50 ms), which consists in 60% of the MainTask cycle (100 ms). This
way, the maximum looseness is 40% and the minimum looseness of 30% is being respected.

ATTENTION

A compilation error is produced in case the minimum looseness isn’t respected, if it is con-
figured in the CPU Project Parameters.

ATTENTION

The compilation being successful or not, MasterTool informs the calculated looseness and
the redundancy overhead predicted on the message window.

6.4.8.1. ActivePrg Program

In this POU the user must create the main application, responsible for its process control. This POU is called by the main
POU (MainPrg), being executed only in the Active CPU.

The user can also create additional POUs (program, function or function block), and call or instance them inside the
ActivePrg POU, in order to structure his program. It’s possible to call functions and instance function blocks defined in
libraries, too.

It must be remembered that all symbolic variables defined in the ActivePrg POU, as the instances of function blocks,
are redundant variables. Symbolic variables defined in additional POUs from the program type which are called inside the
ActivePrg, are also redundant variables.

Variables from the type VAR_TEMP must not be used in the redundant program.

6.4.8.2. NonSkippedPrg Program

This POU is used for controls which must be executed in both CPUs (PLCA and PLCB), independent on the redundancy
state. This POU is also called by the main POU (MainPrg).

It must be remembered that all symbolic variables defined in the NonSkippedPrg POU, as well as the function blocks
instances, are non-redundant variables. The user must create additional POUs (program, function or function block), and call
or instance them inside the NonSkippedPrg POU, in order to structure his program. It’s possible to call functions and instance
function blocks defined in libraries, too.

309

Q
=
G

\

6. REDUNDANCY WITH NX3030 CPU

It must be avoided to call additional POUs from the program type inside the NonSkipped-
Prg, as symbolic variables declared in this type of POU are redundant, and inside the Non-
SkippedPrg it’s normally desirable non-redundant variables. Usually the NonSkippedPrg
code is small and doesn’t need to call additional POUs from the program type for its struc-
ture. If the NonSkippedPrg structure is needed, function blocks or functions must be used.

Typical examples of controls executed in the NonSkippedPrg are the following:

= To create a compact diagnostics structure (%Q) to be reported to a SCADA system, from a complete diagnostics struc-
ture, where many diagnostics are not interesting for the SCADA system. These diagnostics can be extracted from data
structures as RedDgnLoc, RedDgnRem, RedUsrLoc, RedUsrRem, etc.

= To copy commands received from a SCADA system for the respective data structure RedCmdLoc fields, and interconnect
these commands if necessary

= To manage switchovers controlled by the user, in case of not vital failures such as the communication with a SCADA
system or with a MODBUS device

= Enable and disable some specific I/O drivers, depending on the redundancy state (Active or Non-Active). E.g. a MOD-
BUS RTU master driver in a RS-485 bus must be disabled in the Non-Active CPU. For further information see MODBUS
Instances Managing in Redundant System section

It’s not recommended to use function blocks TOF_RET, TON_RET, TOF and TON in the
NonSkippedPrg program. See Limitations on a Redundant PLC Programming.

6.4.9. Redundancy Configuration Object

This object, located in the device tree, is automatically created by the Wizard. It is used to determine which POUs and
GVLs are redundant, and therefore synchronized between PLCs. By default, POUs and GVLs created by the user are marked
as redundant, leaving the option to the user to reverse the marking when needed.

PV, PIDControl and PidRetainGVL objects can’t be individually marked. In case of need to
modification, the Select all option must be marked.

6.4.10. GVL Module_Diagnostics

This special GVL is created and filled automatic by the Wizard and can’t be modified by the user.

System diagnostics and commands, including redundancy data structure (RedDgnLoc, RedDgnRem, RedCmdLoc, Red-
CmdRem), are placed within direct representation special variables %Q or %I.

The Module_Diagnostics GVL has many sentences with the AT keyword to define symbolic names for these diagnostics
and commands. This way, when the user needs to reference these variables, he can use a symbolic name instead a numeric
reference.

6.4.11. GVLs with Redundant Symbolic Variables

The user can create other GVLs different from the previously listed, in order to declare redundant symbolic variables. For
that, after the GVL creation, it’s necessary to mark it in the object Redundancy Configuration, in the project devices tree. By
default, all GVLs created by the user are, initially, redundant.

For good practice it’s recommended to avoid the AT directive use in GVLs which have re-
dundant symbolic variables declaration to prevent variable mapping in non-redundant areas.

310

Q
=
G

\

6. REDUNDANCY WITH NX3030 CPU

6.4.12. POUs from the Program Type with Redundant Symbolic Variables

The user can declare redundant symbolic variables in POUs from the program type, with exception of the NonSkippedPrg
POU where the symbolic variables declared are considered redundant.

In order to define a new POU as redundant, it must be marked in the Redundancy Configuration object after its creation, in
the project devices tree. By default, all POUs created by the user are, initially, redundant.

For good practice it’s recommended to avoid the AT directive use in POUs which have re-
dundant symbolic variables declaration to prevent variable mapping in non-redundant areas.

6.4.13. Breakpoints Utilization in Redundant Systems

For redundant systems it’s recommended to use breakpoints only in the Active half-cluster, with the other half-cluster
deactivated. If not, when the application execution reaches a breakpoint, the Stand-by breakpoint will take over the Active
state, switching off the Active PLC.

6.4.14. MODBUS Instances Managing in Redundant System

In case the vital fault of the Ethernet interfaces is disabled or in the case of MODBUS instances Server, MODBUS in-
stances are independent of redundancy and, therefore, must be managed in the application, being at the user’s discretion which
instances should be enabled/disabled when a PLC enters a Non-Active state. When the vital fault is enabled for Ethernet ports
with MODBUS Client, it is not necessary to implement additional code to control the switch-over.

The example below, inserted in a NonSkippedPrg program, executes the verification of the PLC current state and in case
it’s in Non-Active state, disables the MODBUS RTU master and slave instances and the MODBUS Ethernet Server instance:

VAR

eRedStatelLocal : REDUNDANCY_STATE;
eRedStatelocal_old : REDUNDANCY_STATE;
END_VAR

// Local PLC current state reading
eRedStatelLocal := DG_NX4010.tRedundancy.RedDgnLoc.sGeneral_Diag.eRedState;

// Has the local PLC state changed?

IF eRedStatelLocal <> eRedStatelLocal_old THEN

IF eRedStateLocal = REDUNDANCY_STATE.ACTIVE THEN
// The local PLC has entered the Active state

Diagnostics.DG_MODBUS_RTU_Slave.tCommand.bRestart := TRUE;
Diagnostics.DG_MODBUS_RTU_Master.tCommand.bRestart := TRUE;
Diagnostics.DG_MODBUS_Server.tCommand.bRestart := TRUE;
ELSE

// The local PLC has entered the Non-Active state
Diagnostics.DG_MODBUS_RTU_Slave.tCommand.bStop := TRUE;
Diagnostics.DG_MODBUS_RTU_Master.tCommand.bStop := TRUE;
Diagnostics.DG_MODBUS_Server.tCommand.bStop := TRUE;

END_TF

// Saves the last state of the local PLC
eRedStatelocal_old:= eRedStatelocal;
END_TF

311

\

Q
=
G

6. REDUNDANCY WITH NX3030 CPU

6.4.15. Limitations on a Redundant PLC Programming

On a redundant PLC there are some limitations regarding its half-cluster programming. These limitations are treated in the
subsections below.

6.4.15.1. Limitations in Redundant GVLs and POUs

In a redundant GVL or a POU from the program type the following limitations must be respected for a correct functioning
of the half-clusters:

= Do not use variables from the type VAR_TEMP

= Do not mix variable types (VAR, VAR RETAIN, VAR PERSISTENT, VAR CONSTANT, etc...). Only one type must be
used in each GVL or POU

= Do not mix symbolic variables declaration with ATs in the GVLs. Separate GVLs must be created where in one the AT
variables will be declared and in another, the symbolic variables

= Do not store a variable address in a redundant variable (use a redundant variable as a pointer), as the variable addresses
may be different in the PLCA and PLCB

= Do not use the function blocks for RTC reading and writing in redundant POUs. More details can be found on the section
RTC Clock

6.4.15.2. Non-redundant Program Limitations (NonSkippedPrg)

In a POU from the program type which aren’t redundant, the case of a NonSkippedPrg POU, the following limitations
must be respected for a correct functioning of the half-clusters:

= The traditional function blocks TON and TOF can’t be used as they use the IEC timer. When the Stand-by PLC goes to
Active state (with the other half-cluster coming out of Active state), the IEC timer is synchronized, causing a discontinu-
ity in the timer value. The function blocks TON_NR and TOF_NR must be used instead, available in the NextoStandard
library. See Non-Redundant Timer

= POUs from the program type written in the SFC language (Sequential Function Chart) must not be used, as they use the
IEC timer for transition timing

= Do not mix symbolic variables declaration with ATs in the GVLs. Separate GVLs must be created where in one the AT
variables will be declared and in another, the symbolic variables

6.4.16. Getting the Redundancy State of a Half-Cluster

It is possible to verify the redundancy state of a half-cluster in the Redundancy Diagnostics Structure:

VAR

eRedStatelLocal : REDUNDANCY_STATE;

END_VAR

eRedStatelLocal := DG_NX4010.tRedundancy.RedDgnLoc.sGeneral Diag.eRedState;

This way, the user can control a program logic that depends on redundancy state of the PLC.

6.4.17. Reading Non-Redundant Diagnostics

A redundant project, besides present redundant diagnostics (Redundancy Diagnostics Structure or the diagnostics from
a PROFIBUS remote), presents also non-redundant diagnostics (diagnostics from the modules NX5000, NX5001, NX3030,
etc.). These non-redundant diagnostics could be invalid and must not be considered at the first instants in Active state, as they
aren’t synchronized with the other PLC (the diagnostic state when the remote PLC was active is unknown). Therefore, these
diagnostics must be ignored during the first moments in Active state, until they have valid values. Typically the time during
which the diagnostics should not be considered is 5 s.

The example below shows how to not consider the diagnostics bSlaveNotPresent and bPbusCommFail from the NX5000
PROFIBUS Master module.

Logic in NonSkippedPrg:

6. REDUNDANCY WITH NX3030 CPU

PROGRAM NonSkippedPrg

VAR

TON_DiagEnable : TON_NR;
bDiagEnable : BOOL;
bIsActiveState : BOOL;
bIsActiveState_old : BOOL;

END_VAR

bIsActiveState := (DG_NX4010.tRedundancy.RedDgnLoc.sGeneral Diag.eRedState =
REDUNDANCY_STATE.ACTIVE) ;

TON_DiagEnable (IN:= (bIsActiveState = bIsActiveState_old), PT:= T#5S, Q=>
bDiagEnable) ;

bIsActiveState_old := bIsActiveState;

Logic in ActivePrg:

IF NonSkippedPrg.bDiagEnable THEN

IF DG_NX5001.tGeneral.bSlaveNotPresent OR DG_NX5001.tGeneral .bPbusCommFail THEN
//Actions executed when the diagnostics are active

END_TF

END_TF

6.5. Redundant CPU Program Downloading
The Redundant CPU Programming section described issues related to the development of a project for a redundant CPU
with NX3030 CPU.

In this section, many methods and steps to download this project in a redundant CPU are described, considering situations
such as:

Downloading the project in a brand new NX3030 CPU or in a CPU with an unknown project

Online modifications downloading

Offline modifications downloading with the process control interruption, during a programmed process stopping
Offline modifications downloading without the process control interruption, using redundancy features

6.5.1. Initial Downloading of a Redundant Project

This section describes the necessary steps to run the first download of a redundant project in a NX3030 CPU. This is
necessary, for instance, for a brand new CPU recently manufactured, or for a CPU that has an unknown project.

The following steps must be executed for both half-clusters (PLCA and PLCB) which com-
pose a redundant CPU. First all steps must be executed for one CPU and then for the other.

6.5.1.1. First Step — IP Address Discovering for MasterTool Connection

The first step is to discover the IP address from the NET 1 channel in this CPU, for MasterTool connection.

This must be done through NX3030 CPU display and button, as described in the CPU’s Informative and Configuration
Menu section. The NETWORK menu informs the IP address which can be used for MasterTool connection.

313

\

Q
=
G

6. REDUNDANCY WITH NX3030 CPU

6.5.1.2. Second Step — Verifying IP Addresses Conflict

Before executing the third step, one must be sure there’s no other equipment with the same IP address connected to the
network, discovered in the first step. This can be discovered, for instance, disconnecting the CPU from the network and
executing a “ping” in its IP address. As the CPU is disconnected from the network, the “ping” function must fail. If not, there’s
equipment with the same IP address.

In case the IP address is already being used by equipment in the network, the third step must be executed, and some of
the following steps too, using a crossover cable to connect MasterTool to the CPU, avoiding IP addresses conflict. In one of
the following cases, at downloading the project in the CPU, the definitive IP addresses are updated in it (see Ethernet Ports
Configuration in the CPU NX3030 (NET 1 and NET 2) section).

6.5.1.3. Third Step — Preparing MasterTool Connection (Set Active Path)

The third step consists in double-clicking on the Device (NX3030 PLC) in the Device Tree, getting in the tab “Communi-
cation Settings”, clicking on the Gateway, and pressing the “Scan Network” button to list all CPUs detected by MasterTool in
the network.

At this moment, a CPU whose identification has the IP address found in the first step is supposed to appear. In case the
user has changed the network CPU name previously, this name will be visualized. MasterTool Connection with a NX3030
CPU from a Redundant PLC section describes with more details the possible identifications which can be observed on this
list. Anyhow, all possible identification has a field showing the IP address or part of it. For instance, the bytes between square
brackets form the CPU address. The right byte inside the brackets, indicate the IP address end in hexadecimal. If the bytes
form the address [0010], this means the byte with value “10” indicates that the CPU IP address end is xxx.xxx.xxx.16. Next,
the CPU in the list must be clicked and the “Set Active Path” button pressed. This done, the selected CPU must appear stressed
on the list, indicating MasterTool is prepared to connect to this CPU.

6.5.1.4. Forth Step — Identifying the NX3030 CPU and Verifying the CPU Display

The forth step consists in identifying the half-cluster as PLCA or PLCB. This is made through the Online / Redundancy
Configuration menu:

Next, the combo-box “PLC Identification” allows selecting one out of the three following options:

= PLCA
= PLCB
= Non-Redundant

L Redundancy Configuration - 192.168.18.54

PLC Identification

PLC A W Wiite

Project Syncronization

Enable W Wiite

0K

Figure 182: PLC Identification

In case of a redundant CPU, the user must select PLCA or PLCB. After selecting the desired option, the “Write” button
correspondent to this combo-box must be pressed. MasterTool returns a message warning that the CPU will be restarted and

314 altus

——

6. REDUNDANCY WITH NX3030 CPU

waits for the user to confirm the action. Then a message indicating command success or failure will appear. If there’s success
the CPU will be restarted.

The NX3030 CPU can’t be in Run mode when this command is executed. Before executing
this command, the user must put the CPU to Stop mode. In case the CPU is in Run mode,
the command isn’t executed and MasterTool warns the command has failed.

Just after executing the identification command with success, it can be observed that the selected identification appears on
the Redundancy Diagnostics on NX3030 CPU Graphic Display.

The CPU identification is also available in an internal diagnostic (DG_NX4010.tRedundancy.RedDgnLoc.sGeneral_Diag.ePLC_ID).
This diagnostic is updated from the non-volatile memory each MainTask cycle, so it’s necessary for the CPU to go back to
Run mode to update it. The codes returned by the diagnostics and its respective limitations are listed below:

= Non-Redundant: 0
= PLCA:2
= PLCB: 3

The CPU identification isn’t part of the redundant project developed with MasterTool. Such identification is only in a CPU
non-volatile memory area, which can be modified using MasterTool.

The redundancy doesn’t work properly in case one of the CPUs isn’t identified as PLCA and
the other PLCB, when a process control interruption may occur. In case one NX3030 CPU
must be replaced (e.g. after a damage), the new CPU must be previously identified with the
same identification of the damaged one. The CPU display must be used to verify if both
CPUs are correctly identified.

6.5.1.5. Fifth Step — Redundant Project Downloading

This step describes the redundant project downloading in the CPU. This project must be prepared according to the Redun-
dant CPU Programming section.

A simple project (basic) can be prepared following, at least, the next subsections presented in this section:

= Wizard for a New Redundant Project Creation
= Ethernet Ports Configuration in the CPU NX3030 (NET 1 and NET 2)

Obviously, it’s also possible to build a complete project and only later download it in the PLCA and PLCB, for instance, in
case these CPUs hardware aren’t available during the project developing in MasterTool.

The first download of a redundant project in a CPU, previously identified as PLCA or PLCB, still must be done using the
IP address discovered in the first step, and selecting the third step of this procedure. The project download is run through the
Online | Login menu.

ATTENTION

Inside the developed project using MasterTool and downloaded in the CPU in this step, were
defined new IP addresses for the NET 1 interface in the PLCA and PLCB (IP Address PLC
A and IP Address PLC B), as well as an IP address for the NET 1 interface in the Active
CPU (IP Address Active) — see Ethernet Ports Configuration in the CPU NX3030 (NET 1
and NET 2) section.

Therefore, after this first download, the IP address discovered in the first step of this proce-
dure usually isn’t valid anymore. This IP Address change in NET 1 causes a connection loss
between MasterTool and the CPU, which is showed on the screen.

For further details regarding MasterTool reconnection, see MasterTool Connection with a
NX3030 CPU from a Redundant PLC section.

315

Q
=
G

\

6. REDUNDANCY WITH NX3030 CPU

6.5.2. MasterTool Connection with a NX3030 CPU from a Redundant PLC

After executing the procedure described in the Initial Downloading of a Redundant Project section in both PLCs (PLCA
and PLCB), MasterTool connection, through the NET 1 interface from NX3030 CPU can be made through one of the following
addresses:

= [P Address PLC A: NET 1 address exclusive for PLCA
= [P Address PLC B: NET 1 address exclusive for PLCB

Independent from the PLC state, MasterTool can only connect to it using the PLC exclusive address, configured in IP
Address PLC X. But in case the PLC is in Active state, all other services can connect to it either by the IP Address PLC X or
by the IP Address Active.

To connect to a specific PLC, at first a double-click must be done on the Device (NX3030) in the Device Tree, go into
“Communication Settings” tab, click on the Gateway and press “Scan Network” button to list all PLCs detected by MasterTool
in the network.

On this list it’s possible to find the following standard identifications, in case the PLC name on the network hasn’t been
changed previously by the user:

» NX3030_<IP address>_PLCA: identification related to the PLCA. In this case, the field <IP address> must be the same
as the IP Address PLC A configured in the project.

» NX3030_<IP address>_PLCB: identification related to the PLCB. In this case, the field <IP address> must be the same
as the IP Address PLC B configured in the project.

Next, the PLC which MasterTool is to connect must be selected from the list and the button “Ser Active Path” must be
pressed. Then, at executing the command from the Online / Login menu, MasterTool connects to this PLC.

MasterTool can only connect to one PLC at a time. To connect to several PLCs, multiple
instances must be open in MasterTool, when care must be taken to open the correct project
in each instance.

6.5.3. Modification Download in a Redundant Project

After both PLCs (PLCA and PLCB) from the redundant pair had its initial program already downloaded, as described in
the Initial Downloading of a Redundant Project section, it’s possible to download successive changes in the project, when
such changes are necessary.

MasterTool connection to the PLCs responsible for the modifications download must be executed as described in Mas-
terTool Connection with a NX3030 CPU from a Redundant PLC section. In this section it is explained how it’s possible to
connect to a specific PLC (PLCA or PLCB), to the Active PLC or to the Non-Active PLC.

Usually the modifications must be downloaded to the Active PLC and next automatically synchronized with the Non-
Active PLC, through synchronism channels NETA/NETB. Therefore, MasterTool normally must use the Active PLC exclusive
IP address (IP Address PLC X) to connect to NET 1 channel from the NX3030 CPU in the Active PLC. In order to verify
which PLC is in Active state, the same step described in Initial Downloading of a Redundant Project - Forth Step — Identifying
the NX3030 CPU and Verifying the CPU Display can be followed.

ATTENTION

To download a project in the Non-Active PLC is usually useless as the project automatic syn-
chronization (Active to Non-Active PLC) would cancel the effect of this download. How-
ever, there are special situations when the project synchronization must be disabled tem-
porarily, being possible and useful to download a different project in the Non-Active PLC.
These special situations are discussed in the Exploring the Redundancy for Offline down-
loading of Modifications without Interruption of the Process control section.

6.5.4. Offline and Online Modifications Download

Project modifications may be downloaded offline or online.

Offline downloads require the PLC, where the downloaded is supposed to be executed, stopping. On the other hand, online
downloads allow the PLC to continue executing its application while the modification is downloaded.

Some modification types require offline download and can’t be executed online in the PLC where MasterTool is connected.
In this case, there are two options:

316 altus

——

6. REDUNDANCY WITH NX3030 CPU

= To interrupt the process control, executing the procedure described in the Offline Download of Modifications with
Process Control Interruption section

= Use the PLC and the PROFIBUS networks redundancy in order to avoid interruption of the process control, even with
the necessity to execute offline downloads in each half-cluster (PLCA or PLCB). A procedure to reach this objective
is described in the Exploring the Redundancy for Offline downloading of Modifications without Interruption of the
Process control section

6.5.4.1. Modifications which Demand Offline Download and the Interruption of the Process Control

The following modifications in a project will make it impossible to be downloaded in a redundant system with no interrup-
tion of the process control:

= Modifications in the redundant memory areas (changes in the Redundancy Parameters from the module NX4010)

Will not be possible to change the size of redundant memory areas without the interrupt of
the process control. Thus, these areas must be carefully planned and previously configured.

6.5.4.2. Modifications which Demand Offline Download
The following modifications demand offline downloads in the PLC where MasterTool is connected:

= To add or remove devices from the device tree, such as:
¢ Modules in the main rack (NX5001 PROFIBUS masters, NX5000 Ethernet interfaces, etc.)
¢ Remotes in PROFIBUS networks
¢ [/O modules in remotes in PROFIBUS networks
* MODBUS instances
= To modify parameters inside devices from the device tree, such as:
TP addresses and other Ethernet interfaces parameters
¢ PROFIBUS master parameters
* PROFIBUS remotes parameters
* I/O modules parameters inside PROFIBUS remotes

= To modify a task’s period
Project update due to MasterTool IEC XE programmer Update

6.5.4.3. Modifications which Allow Online Download

A priori, the modifications not mentioned in the sections Modifications which Demand Offline Download and the Inter-
ruption of the Process Control and Modifications which Demand Offline Download, allows online download.

Even this way, the modifications which allow online download in the PLC where MasterTool is connected are listed below.
These modifications are valid for variables, POUs and GVLs, redundant or not:

» To add POUs from the program type, if these POUs don’t need to be associated to any task

= To remove POUs from the program type, if these POUs aren’t associated to any task

= To add or remove POUs from the function or function block type

= To modify the code of any type of POU (program, function or function block)

= To add or remove symbolic variables in any POU type (program, function or function block)

» To add or remove instances of function blocks in POUs from the program or function block type
= To add or remove GVLs

= To add or remove symbolic variables or instances of function blocks in GVLs

317

Q
=
G

\

6. REDUNDANCY WITH NX3030 CPU

6.5.5. Online Download of Modifications

In the Offline and Online Modifications Download section, modifications which demand offline download were described,
along with the ones that allow online download.

An online change must be made by connecting the MasterTool to the NET 1 channel of the active CPU, using its unique IP
address. Before version 2.01 of the MasterTool IEC XE, it was necessary that the user selected the “Create Boot Application”
option in the Online menu, after sending the application for the changes to be sent to the non-volatile memory area of the
CPU and could be synchronized. From version 2.01 this operation is no longer needed. After sending the application the send
operation for non-volatile memory is performed automatically.

ATTENTION

It’s important to remember that online modifications, without the option mentioned previ-
ously selected, will be lost in case of a Reset Warm or a CPU switch off.

ATTENTION

|

An online change in the declaration of retain variables of the application (adding or removing
variables) followed by a drop in the power PLC before “Create Boot Application”, will
corrupt retentive memory, because the value of the retain variables that were saved does not
match the retrieved application variables in the restored memory.

J

When the Non-Active PLC realizes that has a different project from the Active PLC, it executes the following actions:

= Negotiates automatic project synchronization with the Active PLC

= In case it’s in the Stand-by or Starting state, it switches to the Not-Configured state and remains in it until the projects
are synchronized again. After that, returns automatically to the Stand-by state

= In case it’s in the Not-Configured or Inactive state, the STAND-BY button from the PX2612 panel must be pressed or an
equivalent command must be executed. This way, after the project synchronization, it goes out from the Not-Configured
state and can go to Stand-by state, or go back to the Inactive state if there’s a failure

6.5.6. Offline Download of Modifications with Process Control Interruption
In the present section, it’s defined a procedure to execute an offline download which interrupts the process control. Such
situation is acceptable in specific process types and during programmed process stopping.

An offline download from this type must be executed connecting MasterTool to the NET 1 channel of the Active PLC using
the exclusive IP address from the Active PLC (IP Address PLC X). Before beginning an offline download in the Active PLC
the user receives two MasterTool warnings:

MasterTool IEC XE

An application "Application’ is currently an the PLC. As there is no matching
compile information, this existing application needs to be replaced.

Click "ves' to download the latest code or "No' to abart.

fes Mo Details...

Figure 183: Offline Download Warning

By pressing Yes, the project is downloaded. When an offline download is performed, the process’ control is interrupted,
because the project is sent to the Active PLC, which will leave the Run state, and therefore will be in the Not-Configured state.

Another important point is that if the other PLC is in Stand-by state, it must be switched to Inactive state, e.g. pressing
the PX2612 INACTIVE button on this PLC. This way, the turn off of this PLC by the other PLC and its take over as Active is
avoided.

318

Q
=
G

\

6. REDUNDANCY WITH NX3030 CPU

When the Active PLC goes out from the Run mode and goes to Not-Configured, if the other
PLC was forgotten in Stand-by state, it takes over as Active and switches off the PLC which
has just gone from Active to Not-Configured. In this case, thus, the offline download can’t
be completed because the PLC connected to MasterTool is off.

When the offline download finishes, it’s possible to restart the PLC program execution where the application was down-
loaded (put in Run again). After a few seconds, this PLC takes over again the Active state.

After this PLC takes the Active state again, the other PLC can go out from the Inactive state, e.g. pressing the PX2612
STAND-BY button on it. This causes the transition of this PLC to the Not-Configured state. This PLC remains in the Not-
Configured state until the automatic project synchronization finishes. Then, it goes to Starting state and back to Stand-by state
afterwards.

6.5.7. Previous Planning for Offline Modifications without Process Control Interruption

The following subsection — Previous Planning for Hot Modifications in Redundant PROFIBUS Networks — describes a very
important procedure which allows the offline modifications download without interrupting the process control. Even though
this procedure doesn’t apply to any modification that demand offline download, it applies to the most used modifications.

However, in order to apply this procedure, the projects must be developed with a previous planning, especially for modifi-
cation that affects the PROFIBUS network. The following subsections describe such previous planning for modifications that
affect the PROFIBUS network and also other modifications.

6.5.7.1. Previous Planning for Hot Modifications in Redundant PROFIBUS Networks

Among the modifications that affect a PROFIBUS network and demand an offline download, the following are supported
by the procedure which allows executing offline downloads without interrupt the process control, if the PROFIBUS network is
redundant:

= Insert a new PROFIBUS network

= Insert a new Ponto Series remote

= Insert a new I/O module in a Ponto Series remote

= Modify parameters in Ponto Series remotes or in I/O modules in Ponto Series remotes

It’s possible to insert non-redundant remotes under a redundant PROFIBUS network, us-
ing the AL-2433 module (ProfiSwitch), as the example shown on Figure 159. However,
such non-redundant remotes will suffer discontinuities (output deactivation) when the of-
fline download is executed.

Next, the planning steps that must start at the creation of a new redundant PROFIBUS network are described.

6.5.7.1.1. Step 1 — Plan Future Expansion of the Remotes Inserted in the PROFIBUS Network Initial Version

At first, a list must be made of the I/O modules which compose each redundant PROFIBUS remote from the Ponto Series,
in the PROFIBUS network initial version. The list must have the position where each I/O module is inserted in the remote
rack.

Next, the future expansion of each remote must be planned. For that, a complementary list must be made, consisting in I/O
modules which might be inserted in the future. In it, the position where each I/O module might be inserted in the remote rack
must be listed.

ATTENTION

At the physical construction of these remotes (electric panels), it’s strongly recommended to
insert compatible bases with the future I/O modules in the respective positions. This way,
when the I/O module insertion is necessary in this remote, there’s no need for switching
off the remote to insert the base. In case this detail isn’t observed, it will be necessary to
switch off the specific remote, as it’s not possible a base hot insertion in the remote. It can
be observed that the remote stopping in some cases can be tolerable, but not always.

319

Q
=
G

\

6. REDUNDANCY WITH NX3030 CPU

ATTENTION

The original I/O module bases must be inserted in the first remote rack positions and the
future I/O modules, in the last remote rack positions.

ATTENTION

|

It must be considered the limitations of the Ponto Series redundant remotes at construct-
ing this list, as the PO5063V1 PROFIBUS Head and PO5063V5 PROFIBUS Redundant
Head Utilization Manual, and PO5064 PROFIBUS Head and PO5065 PROFIBUS Redun-
dant Head Utilization Manual. There are limits regarding the number of modules per remote,
number of bytes per remote, current consuming per power supply, etc. These limits are ver-
ified automatically by the ProPonto. For further information, see the MT6000 MasterTool
ProPonto Utilization Manual - MU299040.

6.5.7.1.2. Step 2 — Insert the Redundant PROFIBUS Network Initial Version in the Project

To insert the redundant PROFIBUS network initial version in the project, initially the two redundant NX5001 modules
must be inserted in the rack, or use those already inserted by the redundancy wizard.

Next, each remote must be inserted in the device tree below these two NX5001, as well as the I/O modules under each
remote.

Regarding the inserted I/O modules, there are two categories that must be treated differently:

= Those that are part of the PROFIBUS network initial version and will be installed immediately
» Those that will be used for future expansion

In the case of those that are part of the PROFIBUS network initial version, the module itself must be inserted in the device
tree, in the planned remote correspondent position.

In the case of those that will be used for future expansion, a virtual module must be inserted in the planned correspondent
position. A virtual module correspondent to a real module needs to allocate the same amount of I/O bytes than this real module.
The virtual module insertion in the place of a real module avoids the real module absence diagnostics to be produced.

The following table shows real modules and its correspondent virtual modules:

Real Module | Correspondent Virtual Module
PO1000 P0O9999 - 2 bytes Input
PO1001 P0O9999 - 2 bytes Input
P0O1002 P0O9999 - 2 bytes Input
PO1003 P09999 — 2 bytes Input
PO2020 P09999 - 2 bytes Output
PO2022 P0O9999 - 2 bytes Output

Table 204: Virtual Modules correspondent to the real modules

6.5.7.1.3. Step 3 — Allocate %I and %Q Variables Areas for the PROFIBUS Network considering Future Remote Expansion

As the NX5001, remotes and I/O modules were being inserted in the device tree in the previous step, %I and %Q variables
were being allocated in three different areas:

= %I variables area for inputs
= 9%Q variables area for outputs
= %Q variables area for diagnostics

MasterTool executes the allocation of each one of these three variable areas in a continuous way, with no holes between
them.

The initial and final address of each one of these three areas must be planned, considering the initially installed remotes in
the network (see steps 1 and 2), but also remotes which might be inserted in the future in this same PROFIBUS network.

At defining the initial address of each area, it’s important to reserve expansion for the device which allocates addresses
immediately before the beginning of this area. On the other hand, at defining the final address of each area, it’s important to
reserve expansion for this PROFIBUS network.

Next, an example of such planning is shown, for %I variables area for inputs:

320

Q
=
G

\

6. REDUNDANCY WITH NX3030 CPU

= PROFIBUS 1 network:
* %IBO ... %IB499 (addresses allocated to already installed remotes)
e %IB500 ... %IB999 (addresses allocated to future remotes)
= PROFIBUS 2 network:
* %IB1000 ... %IB1499 (addresses allocated to already installed remotes)
* %IB1500 ... %IB1999 (addresses allocated to future remotes)
= Modbus TCP server:
* %IB2000 ... %IB2999 (addresses allocated to current mapping)
* %IB3000 ... %IB3999 (addresses allocated to future mapping)

For the two other areas (output %Q and diagnostic %Q) similar examples could be executed.

It’s possible to predict the initially allocated and future expansion areas size using the following table which indicates the
byte quantity allocated for the 3 areas for each module:

Module Inputs %I (bytes) | Outputs %Q (bytes) | Diagnostic % Q (bytes)
NX5001 4 2 86
PO5063V5 0 0 25
PO5065 0 0 25
P09100 (one each remote) 2 2 10
PO1000 2 0 10
P0O2020 0 2 10
P09999 - 2 bytes Output 0 2 10
P09999 - 2 bytes Input 2 0 10

Table 205: %I and %Q variables allocation for PROFIBUS network modules

Note:

Variable Allocation: Further information regarding the size and type of memory allocated for each module can be found
in the PROFIBUS-DP NX5001 Master Utilization Manual.

After executing the planning for the 3 areas (initial and final address of each area), the initial addresses must be inserted in
the projected started in step 2.

At first, the parameter “%Q Start Address of Module Diagnostics Area” must be modified in the first NX5001 module, as
shown on the table on the next figure. The planned initial address must be used for the diagnostic %Q variables.

Second, the first network I/O module must be found, starting with the NX5001, which allocate %I variables for inputs. At
finding it, the correspondent “Address” parameter must be altered.

Third, the first network I/O module must be found, starting with the NX5001, which allocate %Q variables for outputs. At
finding it, the correspondent “Address” parameter must be altered.

At this moment it’s recommended to verify the allocated address range for the 3 variable
areas, verifying if the final addresses of each area are within the planned range, and if there’s
a good free area for expansion for new future remotes insertion.

6.5.7.2. Previous Planning for Other Hot Modifications

There are other hot modifications which, though they don’t affect the PROFIBUS network, also demand offline down-
loading. Next, it’s presented some examples of this type of modifications supported by the procedure which allow executing
modifications offline download without interrupting the process control:

= NX5000 modules insertion (Ethernet)
= Ethernet or Serial communication I/O driver insertion
= Ethernet or Serial communication I/O driver new mapping insertion

321

]
=
G

\

6. REDUNDANCY WITH NX3030 CPU

On the other hand, the previous examples of modifications imply the direct representation %I and %Q variables allocation
for diagnostics, inputs and outputs similar to discussed in step 3 from the previous planning for hot modifications which affect
the PROFIBUS network (see Step 3 — Allocate %I and %Q Variables Areas for the PROFIBUS Network considering Future
Remote Expansion).

This way, at inserting the NX5000 module, or an I/O Ethernet or Serial driver, the allocation of the 3 following areas must
be planned for the inserted device:

= %] variables area for inputs
= %Q variables area for outputs
= 9%Q variables area for diagnostics

The Step 3 — Allocate %I and %Q Variables Areas for the PROFIBUS Network considering Future Remote Expansion
section shows an example of group allocation of these areas, including PROFIBUS networks and an I/O driver (MODBUS
TCP server).

6.5.7.3. Incompatibility of Applications

If the areas to be used in the future not be planned properly, the redundant memory areas may have to be altered, thus
generating an incompatibility between the applications. This will result in only on PLC to remain in the Active state, with the
other PLC remaining Inactive, without the possibility of synchronizing redundant data or application between the two PLCs.

This incompatibility is informed by the redundancy diagnostics at:
DG_NX4010.tRedundancy.RedDgnLoc.sGeneral_Diag.bApplicationIncompatible.

This diagnostic is active when the download of a new application is done to one of the PLCs, usually the Non-Active, with
one of the following changes:

= Changes in the redundant memory areas, configured in the parameters of the NX4010 module
= Changes (create or remove) in the symbolic redundant variables, declared in redundant POUs or redundant GVLs

It is important to stress that, to make changes in symbolic redundant variables, the incompatibility problem will occur only
if a new application download is done to one of the PLCs. In case that the modifications in symbolic redundant variables, and
all the other modifications made in the project, fit into the group of Modifications which Allow Online Download, it’s possible
to do an Online Download of Modifications with no generation of incompatibility of applications between the PLCs.

6.5.7.4. Project Update due to MasterTool IEC XE Update

The MasterTool IEC XE programming tool is under a constant enhancement process, improving its features and adding
new ones. When it is necessary to update the tool in a redundant system, the used project also needs to be updated. This update
is done through the Project/Project Update menu, available in the tool. After updating the project, the Offline download
without Process Control Interruption can be done.

6.5.7.4.1. Updating Project from Versions Previous to 2.00 to version 2.00 or Higher

Among the MasterTool IEC XE version changes there is a special case that must be planned more carefully to avoid
stopping the process. The update of a project created with a version prior to 2.00 of the MasterTool IEC XE to version 2.00 or
higher causes a reconfiguration in the area allocated for the Persistent Variables object. This reconfiguration was implemented
aiming at optimizing the allocation of this area. However, if this object is present and marked as redundant in a project, this
reconfiguration won’t allow the data to be synchronized between the two project, always setting one of the Half-Cluster in
Inactive State.

This way, if this situation happens, the NX3030 CPU software can detect it and stop the synchronization of the Persistent
Variables object data until the two Half-Clusters’ projects are the same, and, therefore, are using a project with the updated
MasterTool IEC XE version. This situation won’t stop the process, but if a correct update sequence is not followed, the data of
the Persistent Variables object can be restarted.

In this case, the Offline Download sequence below must be followed:

= Change the Half-Cluster in Active state project, unmarking the PersistentVars object inside the Redundancy Configura-
tion object. This download must be done as an Online change and for this to happen another change in the project must
be done, e.g. declaring a new variable inside the NonSkippedPrg POU

= After the Online change, it’s necessary to run the command Create Boot Application while online, with the PLC in Active
state. This is necessary so that the application is synchronized with the Half-Cluster that passed to Not-Configured state
after the download

= Update the project from version lower than 2.00 to version 2.00 or higher through the Project/Project Update menu in
MasterTool IEC XE

322 altus

——

6. REDUNDANCY WITH NX3030 CPU

= Disable the Project Synchronization through the Online/Redundancy Configuration menu

= Download the updated Project into the Half-Cluster that’s in Stand-by state. A message will be displayed indicating the
PersistentVars object memory area reorganization. The procedure must continue and by the end of the project download
the Half-Cluster will remain in STOP with a redundancy state as Not-Configured

= Put the CPU in RUN. The Half-Cluster will change to Starting state and then to Stand-by. The Half-Cluster will syn-
chronize its data with the one that’s in Active state

= The data from the PersistentVars object must be copied from the Active Half-Cluster to the Stand-by manually or the
receipt resource must be used

= Put the Active Half-Cluster to Stand-by. With this action, the other Half-Cluster will go to Active

= Enable the Project Synchronization through the Online/Redundancy Configuration menu. After this, the Half-Cluster in
Stand-by state will go into Not-Configured state and will receive the project from the Half-Cluster in Active state. By
the end of this process, the Half-Cluster state will go to Starting and then back to Stand-by

= Change the Project of the Half-Cluster in Active state marking the PersistentVars object inside the Redundancy Config-
uration object. This download must be done as an Online change, and for this to happen, another change in the project
must be done, e.g. removing the variable declared at the beginning of this process

= After this, the Half-Cluster that was in Stand-by will pass to Not-Configured and will receive the Project from the
Half-Cluster in Active state. By the end of this process the Half-Cluster state will change to Starting and then back to
Stand-by

6.5.8. [Exploring the Redundancy for Offline downloading of Modifications without Interruption of the Process control

In the section Offline and Online Modifications Download, it was informed that some modifications demand offline load-
ing in the PLC where such modifications must be loaded. In these cases, the user has the option to interrupt the process control,
according to the procedure defined in the section Offline Download of Modifications with Process Control Interruption. There-
fore, it is usually necessary to program a process stop in advance, which is not always possible when an urgent modification is
needed.

Thanks to the redundancy of the PLCs and, in some cases, thanks to the redundancy of the PROFIBUS network, it is
possible to carry out offline loads without interrupting the process control for most of the usually necessary modifications. To
achieve this goal, it is necessary to carefully follow a procedure, whose steps are described in the following subsections.

6.5.8.1. Step 1 - Verify Basic Requirements Attending

For the offline downloading with no interruption of the process control to be possible, the following basic requirements
must be attended:

= The original project must have been created according to the recommendations of the Previous Planning for Offline
Modifications without Process Control Interruption section

= The PLC must be redundant
= In case the modification affects the PROFIBUS network, it’s necessary this network to be redundant. Such modifications
may be:
¢ New remotes insertion

* I/O modules insertion in existent remotes, in previously reserved positions for correspondent virtual modules. For
the remote not have to be switched off, there’s the need of a base compatible with the new I/O module in the
position reserved for it

¢ Parameters modifications in remotes or existent I/O modules

= Both PLCs projects must be equalized and the Redundant Data Synchronization and Redundant Forcing List services
must be working properly with no failure diagnostics. It can be stated these conditions are satisfied when there’s a PLC in
Active state and another in Stand-by state. In case the Non-Active PLC isn’t in Stand-by state, the following diagnostics
can be observed:

¢ DG_NX4010.tRedundancy.RedDgnLoc.sGeneral_Diag.bRedDataSync = TRUE, indicates the success of the Re-
dundant Data Synchronization service

¢ DG_NX4010.tRedundancy.RedDgnLoc.sGeneral_Diag.bRedForceSync = TRUE, indicates the success of the Re-
dundant Forcing List service

* DG_NX4010.tRedundancy.RedDgnLoc.sGeneral_Diag.dwApplicationCRC = DG_NX4010.tRedundancy.RedDgnRem
.dwApplicationCRC, indicates both PLCs projects are equal

6. REDUNDANCY WITH NX3030 CPU

6.5.8.2. Step 2 — Don’t Download in Group Modifications which can be downloaded Online

Modifications which can be downloaded online must not be downloaded together with modifications which must be down-
loaded offline without the process control interruption. When these two kinds of modifications are needed, they must always
be loaded separately.

For the current procedure to be successful, it’s absolutely necessary the modifications executed to don’t cause any changes
in the structure of the redundant variables exchanged between the Active and Non-Active PLC, through the Redundant Data
Synchronization and Redundant Forcing List services. These two services must continue to working properly even while there
are temporary differences between the PLCs. The modifications that must be loaded offline, and supported by this procedure
do not affect the structure of redundant variables.

However, some modifications which can be loaded online can change the structure of redundant variables, e.g.:

= Insertion of symbolic variables (redundant or not) within a POU or GVL existing or in a new POU or GVL

= Removal of symbolic variables (redundant or not) within a POU or within existing GVL. The removal of a POU or GVL
can also involve the removal of symbolic variables

= Change in size/structure of symbolic variables (redundant or not) in an existing POU or GVL

6.5.8.3. Step 3 — Previous Project Backup

Before editing the modifications that must be loaded offline without interrupting the process control, for safety reasons a
backup of the project previous version must be run. It may be necessary to reinstall the previous version in case an error is
committed during this procedure executing.

The backup recommendation for all loaded versions in the PLCs may not be followed only
in this specific procedure. It must be an usual practice.

6.5.8.4. Step 4 — Cares in Editing the Offline Downloaded Modifications
The offline downloaded modifications through this procedure, usually, are the following:

= Insertion of new devices in the devices tree
= Property or parameter change in devices existing in the devices tree

Such devices are normally the following:

= Modules such as PROFIBUS master (NX5001) or Ethernet modules (NX5000)
= Ponto Series PROFIBUS remotes

= [/O modules inside Ponto Series PROFIBUS remotes

= MODBUS communication I/O drivers

= Mapping of MODBUS communication drivers

The following cares must be taken at editing these project modifications:

= If a device existed in the previous project version, and continues existing in the modified version, the %I and %Q
variables allocated for it must remain the same (command, diagnostic, inputs and outputs). Care must be taken for the
inserted modifications don’t change such allocations

= If a device was inserted in the modified project version, the %I and %Q variables allocated for it must not be allocated
in the previous project version (command, diagnostic, inputs and outputs)

6.5.8.5. Step 5 - Inactive PLC Project Synchronism Disabling

In the procedures described in the Online Download of Modifications and Offline Download of Modifications with Process
Control Interruption sections, the project is automatically synchronized from the Active PLC to the Non-Active PLC.

However, during the procedure of offline downloading without process control interruption, the project synchronism must
be temporarily disabled. The Project synchronization disabling is explained in the section Project Synchronization Disabling
and must be executed in the Non-Active PLC.

324

Q
=
G

\

6. REDUNDANCY WITH NX3030 CPU

6.5.8.6. Step 6 — Physical Modifications Executing
At this moment, the physical modifications can be executed, such as:

= Install a new NX5000 module. This can be done through a module hot-insertion in each half-cluster rack, then connecting
it to the Ethernet network

= Install a new redundant PROFIBUS network. The NX5001 can be hot-inserted in each half-cluster rack. Then, the
redundant PROFIBUS network can be connected to them

= Install a new Ponto Series redundant remote. In this case, a remote head must be installed at a time, e.g. first in the
network B and then in the network A:

* To install the head in the network B, it may be necessary to open the cable or the contacts, thus perturbing the
communication with the other heads already installed in the network B. Before doing that, all the operating active
heads must be placed in the network A and the operating reserve heads in the network B

* To install the head in the network A, it may be necessary to open the cable or the contacts, thus perturbing the
communication with the other heads already installed in the network A. Before doing that, all the operating active
heads must be placed in the network B and the operating reserve heads in the network A

Install an I/O module in a base previously reserved for it, in an existent remote

6.5.8.7. Step 7 — Download the Offline Modifications in the Non-Active PLC

At first, MasterTool must be connected to the Non-Active PLC (see MasterTool Connection with a NX3030 CPU from a
Redundant PLC section).

Next, the offline modifications must be downloaded. At doing it, the Non-Active PLC application is automatically inter-
rupted (goes out of the Run mode).

6.5.8.8. Step 8 — Set the Non-Active PL.C Back to Run Mode to make go back to Stand-by State

The offline load being finished, the Non-Active PLC can go back to Run mode.
A few seconds later, the Non-Active PLC must assume the Stand-by state.
In case the PLC doesn’t assume the Stand-by state, the following problems may have caused this effect:

= The modifications executed changed the redundant variables structure, which prevents the correct execution of the Re-
dundant Data Synchronization service. This can be verified through DG_NX4010.tRedundancy.RedDgnlLoc.sGeneral_Diag
.bRedDataSync (0 = failure) diagnostics in the Non-Active PLC. In this case, the modifications must be undone, recov-
ering the previous project backup and restarting this procedure

= Other problems may eventually prevent the transition to the Stand-by state, even though this is unexpected. In this case,
the diagnostics and the redundancy log must be observed

In case the PLC has assumed the Stand-by state, it’s recommendable to verify if the projects are different between the Active
and the Non-Active PLC. This can be made comparing the diagnostics DG_NX4010.tRedundancy.RedDgnLoc.sGeneral_Diag
.dwApplicationCRC and DG_NX4010.tRedundancy.RedDgnRem.dwApplicationCRC in the Non-Active PLC (the CRCs must
be different).

In case both projects are equal in the PLCs, it’s possible that the project synchronism disabling (step 5) has not being
properly executed. This can be verified through the diagnostic DG_NX4010.tRedundancy.RedDgnLoc.sGeneral_Diag .bPro-
jectSyncDisable, which must be true in the Non-Active PLC. If it isn’t true, the procedure must be returned to step 5.

6.5.8.9. Step 9 — Execute Switchover between Active and Stand-by PLCs

A switchover between the PLCs must be executed, e.g. pressing the STAND-BY button on the Active PLC. The Stand-by
PLC, which has a new project with the modifications, takes over as Active. The Active PLC, which has the old project, takes
over as Stand-by.

325

6. REDUNDANCY WITH NX3030 CPU

6.5.8.10. Step 10 — Projects Synchronism Enabling in the Active PL.C

In the step 5, the project synchronism was disabled in the Non-Active PLC. It can be observed this PLC is now in Active
state.

In this step, the project synchronism must be enabled again in this PLC. The screen and methodology used for it were
described in the section Project Synchronization Disabling. But this time we need to select the “Enable” option from the
combo-box. MasterTool must be connected to the Active PLC (see MasterTool Connection with a NX3030 CPU from a
Redundant PLC section).

After enabling the project synchronism in the Active PLC, the user must verify if this command was successful, verifying
if DG_NX4010.tRedundancy.RedDgnloc.sGeneral_Diag.bProjectSyncDisable = 0, in the Active PLC.

As soon as the project synchronism is enabled again, the following action sequence is expected:

= The Non-Active PLC (Stand-by state), which already knows the different between both projects; goes out from the
Stand-by state and goes to the Not-Configured state

» The modified project (new) is copied from the Active PLC to the other, temporarily in Not-Configured state

= As soon as the projects are synchronized again, the Not-Configured PLC goes to Starting state and then it’s supposed to
go back to Stand-by state

6.5.8.11. Step 11 — Optional Reorganization of PLC and PROFIBUS Networks in Active State

At the end of the procedure, for standardization or organization reasons, the user may execute a switchover for the PLCA
assumes as Active, and for all remotes PROFIBUS heads in Active state are in the network A.

6.6. Redundancy Maintenance
6.6.1. Modules Hot Swapping in a Redundant PL.C

In case of failure in a module from one of the PLCs (PLCA and PLCB), the module hot swapping may be necessary,
without interrupt the process control. For that, the following steps must be followed:

= Verify if the half-cluster which won’t be modified is in Active or Stand-by state, allowing it to take the process control
To put the half-cluster having its module changed in Inactive state, through the Redundancy Control Panel PX2612 or
the Redundancy Commands
Execute the necessary exchanges in the Inactive half-cluster, as indicated in the CPU Configuration - General Parameters
- How to do the Hot Swap section
To put the half-cluster back to Stand-by or Active state, according to necessity

6.6.2. MasterTool Warning Messages

When MasterTool is with a redundant project open, or when it’s connected to a NX3030 CPU identified as PLCA or PLCB,
some special warning messages may occur, as described in the following subsections.

6.6.2.1. Blocking of Redundant or Non-Redundant Project Download

MasterTool doesn’t allow the download of a redundant project, unless the CPU is NX3030 and is identified as PLCA or
PLCB (see Identification of an NX3030 CPU section).

On the other hand, MasterTool doesn’t allow the download of a non-redundant project in a NX3030 CPU identified as
PLCA or PLCB.

In case any of these illegal actions is tried, MasterTool warns with a correspondent message.

6.6.2.2. Warnings before Commands which may stop the Active PLC

Some commands, as the following, may stop a PLC:

= Offline load after Online / Login

= Debug / Stop

= Debug / New Breakpoint

= Online / Reset (Warm, Cold, Origin)

In case MasterTool is logged to the Active PLC, and one of these commands is tried, before sending it to the Active PLC,
MasterTool sends the following message and waits for authorization:

"If the other PLC is in Stand-by State, it will assume as Active and turn-off this PLC. If not, this won’t happen, but the
automated process will no longer be controlled."

326 altus

——

6. REDUNDANCY WITH NX3030 CPU

6.6.2.3. Alert before Logging in to Non-Active CP

In normal circumstances, it isn’t usual MasterTool to connect to the Non-Active PLC. This way, when there’s a try to
execute this type of command, MasterTool sends the following warning:

"You are logging in to a Non-Active PLC, and this is not usual. Are you sure you want to execute this command?"

On the other hand, there are circumstances (not so usual) in which it’s necessary to login in the Non-Active PLC, and in
these cases the user must authorize the login. Such circumstances may occur, e.g.:

= For initial configurations, as described in Initial Downloading of a Redundant Project section

= For downloading offline a different project in the Non-Active PLC, as described in the Exploring the Redundancy for
Offline downloading of Modifications without Interruption of the Process control section

= For monitoring or forcing the non-redundant variables in the Non-Active PLC

6.6.3. Redundancy Diagnostics on NX3030 CPU Graphic Display

Many diagnostics related to redundancy can be observed on the NX3030 CPU display.

6.6.3.1. CP Redundancy Status

The PLC redundancy state, described in Redundant CPU States, is seen in the three initial characters on the main screen
second line, as shown in the section Graphic Display. The display screen is presented on initialization and again a few seconds
after the navigation is finished (without pressing the NX3030 CPU button).

6.6.3.2. Screens below the REDUNDANCY Menu

There’s a menu called REDUNDANCY, where below it there are several screens. The description and access of these
screens are available in the Configuration — CPU’s Informative and Configuration Menu section.

6.6.4. Redundancy Diagnostics Structure

The NX4010 module diagnostics area is mapped over direct representation %Q variables, and defined symbolic through
the AT directive, in the GVL Module_Diagnostics.

This section is divided in two parts:

= DG_NX4010.tGeneral: General diagnostics for NX4010 operation. They are described in the Redundancy Link Module
Technical Characteristics — CE114900

» DG_NX4010.tRedundancy: Redundancy specific diagnostics which are described within the section. This item is di-
vided in other 6 data structures:

RedDgnLoc: Has redundancy diagnostics of the local PLC (connected), e.g. the PLC redundancy state. This
section is described in Redundancy Diagnostics

RedDgnRem: It’s a copy from the other PLC RedDgnLoc, received through Synchronism channels NETA / NETB.
This way the local PLC has access to the remote PLC diagnostics. This section is described in Redundancy
Diagnostics

RedCmdLoc: Has redundancy commands generated in this PLC (local), for instance, through write commands
from a SCADA system or generated in POUs in this PLC (ActivePrg or NonSkippedPrg). This section is described
in Redundancy Commands

RedCmdRem: It’s a copy from the other PLC (remote) RedCmdLoc, received through Synchronism channels
NETA / NETB. This section is described in Redundancy Commands

RedUsrLoc: Used to allow the user to exchange information between PLCA and PLCB. This section is described
in User Information Exchanged between PLCA and PLCB

RedUsrRem: Used to allow the user to exchange information between PLCA and PLCB. This section is described
in User Information Exchanged between PLCA and PLCB

It is important to stress that the redundancy diagnostics structures are refreshed only when occurs, with success, a new data
synchronization. Therefore, until a new synchronization doesn’t occur, the diagnostics will remain with the last read value.

Furthermore, the diagnostics structures from the remote PLC are read only, that is, values written to these structures will
be overwritten in the next synchronization. Thus, is not possible to use the RedCmdRem structure to execute a command in
the remote PLC. Always use the structure RedCmdLoc to execute commands.

327 altus

——

6. REDUNDANCY WITH NX3030 CPU

6.6.4.1. Redundancy Diagnostics

The Redundancy Diagnostics may have several uses, such as:

= They can be consulted in order to verify the existence of a problem that needs to be solved

= Every time there are variations on them, such variations are inserted as events in the Redundancy Event Log. Consulting
the history sequence of such events, a switchover cause may be discovered, for instance

= They can be referenced in the user application (ActivePrg or NonSkippedPrg). E.g. the PLC state can be tested and in
case it’s not active, a MODBUS RTU serial master I/O driver can be disabled, in NonSkippedPrg

The DG_NX4010.tRedundancy.RedDgnLoc.sGeneral_Diag.bExchangeSync (defined next)
must be tested to verify if the data structure RedDgnRem was successfully read from the
remote PLC in the last MainTask cycle. In case this diagnostic value is O (false), this means
the data structure RedDgnRem wasn’t successfully read from the remote PLC, thus the Red-
DgnRem values may be invalid or obsolete.

As RedDgnRem is a copy from the other PLC RedDgnLoc, it can be concluded the two structures have the same format.
These are divided in other four substructures:

= sGeneral_Diag: Redundancy general diagnostics
= sNETA_Diag: NETA synchronism channel diagnostics
= sNETB_Diag: NETB synchronism channel diagnostics

= sNET_Stat: Common statistics for the synchronism channels NETA and NETB, for failure and success counting in the
synchronization services

= sGeneral_DiagExt: Redundancy general diagnostics, extended part (continuing of sGeneral_Diag)

The “sGeneral_Diag” substructure has the following fields for redundancy general diagnostics:

AT variable
Direct Variable DG_NX4010.tRedundancy. Description
RedDgnLoc.sGeneral_Diag.*
Variable Bit
TRUE - The configuration process, exe-
0 bConfigDone cuted in the Not-Configured state, has fin-

ished.

FALSE — The configuration process, exe-
cuted in the Not-Configured state, hasn’t
finished yet or wasn’t executed.

TRUE - The configuration process, exe-
cuted in the Not-Configured state, has fin-
ished with errors. It’s a system error, nor-
1 bConfigError mally not expected. Get in contact with
ALTUS support to report it. Also inform
the ConfigErrorCode diagnostic value for
the ALTUS support.

FALSE - The configuration process has
finished successfully or wasn’t executed.
TRUE — The number of redundant areas
exceeded the maximum allowed. It’s a sys-
tem error, normally not expected. Get in
contact with ALTUS support to report it.
FALSE — The number of redundant areas
is within the expected.

TRUE - Intermediate data structure with
insufficient size. It’s a system error, nor-
mally not expected. Get in contact with
ALTUS support to report it.

2 bTooManyRedAreas

% QB(n+4) 3 bTemporaryBufferTooSmall

328

Q
=
G

\

6. REDUNDANCY WITH NX3030 CPU

Description

FALSE - Intermediate data structure is
within the expected.

TRUE — The Diagnostic and Commands
Exchange synchronization service was ex-
ecuted successfully in this MainTask cycle.

FALSE — The RedDgnRem structure has
obsolete or invalid values, as it wasn’t read
from the other PLC (remote) in this cycle.

TRUE - The Redundant Data Synchro-
nization service was executed successfully
in this MainTask cycle.

FALSE — The Redundant Data Synchro-
nization service wasn’t executed success-
fully in this MainTask cycle.

TRUE - The Redundant Forcing List Syn-
chronization service was executed success-
fully in this MainTask cycle.

FALSE - The Redundant Forcing List Syn-
chronization service wasn’t executed suc-
cessfully in this MainTask cycle.

TRUE - The application isn’t compatible
between the PLCs. Was done a new appli-
cation download with one of the following
changes:

Changes in redundant memory area;
Changes in symbolic redundant variables.
Whereas this diagnostic be TRUE, one of
the PLCs will stay in Inactive state until
the same application be present in the two
PLCs. This implies in reload the old appli-
cation or download the new application to
both PLCs. More information about how
to proceed can be found in section Redun-
dant CPU Program Downloading.

FALSE - The application is compatible be-
tween the PLCs.

Reserved bit.

AT variable
Direct Variable DG_NX4010.tRedundancy.
RedDgnlLoc.sGeneral Diag.*
Variable Bit

4 bExchangeSync

5 bRedDataSync

6 bRedForceSync

7 bApplicationIncompatible

0 Reserved

1 bProjectSyncDisable

TRUE - The project application and
project archive will not be synchronized
between the PLCs. It’s a copy from the
non-volatile variable used to enabling or
disabling the project synchronization, as
described in the Project Synchronization
Disabling section. The project synchro-
nization is disabled in the local or re-
mote PLC. This way, it’s enough to exe-
cute the disabling command in one PLC
for the project synchronization to be dis-
abled. The enabling and disabling project
synchronization commands are described
in the Project Synchronization Disabling
section.

329

6. REDUNDANCY WITH NX3030 CPU

AT
Direct Variable

Variable Bit

variable

DG_NX4010.tRedundancy.
RedDgnlLoc.sGeneral Diag.*

Description

FALSE - The project application and
project archive will be synchronized be-
tween the PLCs

2 bIncompatibleFirmware

TRUE - Firmware version is incompatible
between this CPU and the remote one.

FALSE - Firmware version is compatible
between this CPU and the remote one.

% QB(n+5) 3

bApplicationProjectDiff

TRUE - The project application between
this CPU and the remote one is different.

FALSE - The project application between
this CPU and the remote one is equal.

4 bProjectArchiveDiff

TRUE - The project archive between this
CPU and the remote one is different.

FALSE — The project archive between this
CPU and the remote one is equal.

5 bOnlineChangeApply

TRUE — Some alteration was done online
in the application and it hasn’t been syn-
chronized yet with the stand-by PLC.

FALSE — There wasn’t alterations online in
the application or these have been synchro-
nized already with the stand-by PLC.

6 bFailedRED

TRUE - Failure in the NX4010 module.
The NX3030 CPU can’t communicate with
this module through bus, or there’s a failure
in the NX4010 microprocessor.

FALSE — The NX4010 module is working
properly.

7 bFailedPBUS1A

TRUE - This PLC can’t communicate in
the master state (active or passive) in the
PROFIBUS 1 A network. The master
mode (communicating with slaves) is as-
sumed by the Active PLC. The passive
mode (communicating with the active mas-
ter) is assumed by the Non-Active PLC.
This failure can also be indicated in case
the NX5001 module has a microproces-
sor failure, or in case it can’t communicate
with the NX3030 CPU via bus.

FALSE - There aren’t failures in the
PROFIBUS 1 A network.

0 bFailedPBUS1B

TRUE - This PLC can’t communicate in
the master state (active or passive) in the
PROFIBUS 1 B network. The master
mode (communicating with slaves) is as-
sumed by the Active PLC. The passive
mode (communicating with the active mas-
ter) is assumed by the Non-Active PLC.
This failure can also be indicated in case
the NX5001 module has a microproces-
sor failure, or in case it can’t communicate
with the NX3030 CPU via bus.

330

6. REDUNDANCY WITH NX3030 CPU

AT
Direct Variable

Variable Bit

variable

DG_NX4010.tRedundancy.
RedDgnlLoc.sGeneral Diag.*

Description

FALSE - There aren’t failures in the
PROFIBUS 1 B network.

1 bFailureProfibus_1

TRUE - This PLC can’t communi-
cate in the master state (active or pas-
sive) in the PROFIBUS 1 network.
In case the PROFIBUS 1 network is
redundant, FailurePROFIBUS_1 results
from an AND logic between FailedP-
BUS1A and FailedPBUSIB. In case
the PROFIBUS 1 network isn’t redun-
dant, FailurePROFIBUS_1 is a copy from
FailedPBUS1A.

FALSE - There aren’t failures in the
PROFIBUS network.

%QB(n+6) | 2

bFailedPBUS2A

TRUE - This PLC can’t communicate in
the master state (active or passive) in the
PROFIBUS 2 A network. The master
mode (communicating with slaves) is as-
sumed by the Active PLC. The passive
mode (communicating with the active mas-
ter) is assumed by the Non-Active PLC.
This failure can also be indicated in case
the NX5001 module has a microproces-
sor failure, or in case it can’t communicate
with the NX3030 CPU via bus.

FALSE - There aren’t failures in the
PROFIBUS 2 A network.

3 bFailedPBUS2B

TRUE - This PLC can’t communicate in
the master state (active or passive) in the
PROFIBUS 2 B network. The master
mode (communicating with slaves) is as-
sumed by the Active PLC. The passive
mode (communicating with the active mas-
ter) is assumed by the Non-Active PLC.
This failure can also be indicated in case
the NX5001 module has a microproces-
sor failure, or in case it can’t communicate
with the NX3030 CPU via bus.

FALSE - There aren’t failures in the
PROFIBUS 2 B network.

4 bFailureProfibus_2

TRUE - This PLC can’t communi-
cate in the master state (active or pas-
sive) in the PROFIBUS 2 network.
In case the PROFIBUS 2 network is
redundant, FailurePROFIBUS_ 2 results
from an AND logic between FailedP-
BUS2A and FailedPBUS2B. In case
the PROFIBUS 2 network isn’t redun-
dant, FailurePROFIBUS_2 is a copy from
FailedPBUS2A.

FALSE - There aren’t failures in the
PROFIBUS 2 network.

331

6. REDUNDANCY WITH NX3030 CPU

Direct Variable

Variable

Bit

AT

variable

DG_NX4010.tRedundancy.
RedDgnlLoc.sGeneral Diag.*

Description

bProfibusVitalFailure Any

TRUE - This PLC can’t communicate in
the master state (active or passive) with at
least one of the PROFIBUS networks con-
figured in vital failure mode.

FALSE - There aren’t failures in the
PROFIBUS networks configured in vital
failure.

bProfibusVitalFailure All

TRUE - This PLC can’t communicate in
the master state (active or passive) with all
the PROFIBUS networks configured in vi-
tal failure mode.

FALSE - There aren’t failures in the
PROFIBUS networks configured in vital
failure.

bTurnOffOtherPLC_Normal

TRUE - This PLC is closing the PX2612
relay to keep the other PLC off in normal
conditions and not due to PX2612 panel
test.

FALSE - The PX2612 relay is on
(bTurnOffOtherPLC_TestMode) or off.

%QB(n+7)

bTurnOffOtherPLC_TestMode

TRUE - This PLC is closing the PX2612
relay to keep the other PLC off due to
PX2612 panel test mode.

FALSE - The PX2612 relay is on
(bTurnOffOtherPLC_Normal) or off.

bActiveLED

TRUE - The PX2612 LED ACTIVE is on.

FALSE - The PX2612 LED ACTIVE is
blinking (bBlinkActiveLED) or off.

bBlinkActiveLED

TRUE — The PX2612 LED ACTIVE is
blinking.

FALSE - The PX2612 ACTIVE is on
(bActiveLEDI) or off.

bStandbyLED

TRUE - The PX2612 LED STAND-BY is
on.

FALSE - The PX2612 LED ACTIVE is
blinking (bBlinkStandbyLED) or off.

bBlinkStandbyLED

TRUE - The PX2612 LED STAND-BY is
blinking.

FALSE — The PX2612 LED STAND-BY
is on (bStandbyLED) or off.

blnactiveLED

TRUE - The PX2612 LED INACTIVE is
on.

FALSE — The PX2612 LED INACTIVE is
off or blinking (bBlinkInactiveLED).

bBlinkInactiveLED

TRUE - The PX2612 LED INACTIVE is
blinking.

FALSE — The PX2612 LED INACTIVE is
on (blnactiveLED) or off.

bRedPanelTestMode

TRUE — The PX2612 panel is in test mode.

332

6. REDUNDANCY WITH NX3030 CPU

AT
Direct Variable

Variable Bit

variable

DG_NX4010.tRedundancy.
RedDgnlLoc.sGeneral Diag.*

Description

FALSE — The PX2612 panel is in normal
mode.

% QB(n+8) -

ePLC_ID

This diagnostics inform this PLC identifi-
cation:

- 0 = non-redundant

-2=PLCA

-3=PLCB

It’s a copy from the non-volatile variable
used to identify the PLC, as described in
the Identification of an NX3030 CPU sec-
tion. In the Initial Downloading of a Re-
dundant Project section MasterTool com-
mand used to write on this non-volatile
variable is described.

% QB(n+9) -

eRedState

Informs the redundancy state of this PLC:
- Not-Configured = 0

- Starting = 2

- Stand-by =3

- Active =4

- Inactive = 5

%QBn+10) | -

ePreviousRedState

Previous RedState value before the data
transition.

%QW(n+11) | -

wRedStateDuration

Measures for how long (milliseconds) the
current redundancy state has been as-
sumed. This time stops incrementing when
reaches 65535 ms.

%QWn+13) | -

wConfigErrorCode

Error code discovered during the configu-
ration process in the Not-Configured state.
See ConfigError diagnostics described pre-
viously.

%QDn+15) | -

dwApplicationCRC

32 bits application project CRC, used to
detect differences between the application
projects of the 2 PLCs.

%QD(n+19) | -

dwArchiveCRC

32 bits project archive CRC, used to detect
differences between the project archive of
the 2 PLCs.

%QDM+23) | -

dwFirmware Version

This PLC firmware version, used to ver-
ify the compatibility between both PLC
firmware.

%QDM+27) | -

dwlECTimer

The IEC Timer synchronization is neces-
sary for the bump-less operation of some
function block as TON and TOF. Through
this diagnostic the IEC Timer from the
Active PLC is received and updated in
the Non-Active PLC, since the Diagnostics
and Commands Exchange service has been
executed successfully. The counting starts
at 0 and is incremented up to 4294967295.
After counting overflow restarts with 0.

333

6. REDUNDANCY WITH NX3030 CPU

variable

DG_NX4010.tRedundancy.
RedDgnlLoc.sGeneral Diag.*

Description

wCycleCounter

16 bits counter, used as sequence auxil-
iary information in the Redundancy Event
Log. In the Active PLC, it’s incremented
each MainTask cycle. In the Non-Active
PLC, receives a copy of the value existent
in the Active PLC, since the Diagnostics
and Commands Exchange service has been
executed successfully. The counting starts
at 0 and is incremented up to 65535. After
counting overflow restarts with 0.

Table 206: Redundancy General Diagnostics

AT
Direct Variable
Variable Bit
%QW(n+31) | -
Notes:

Diagnostics Structures Visualization: The diagnostics structures added to the project can be visualized accessing the
Library Manager from the tree view in the MasterTool IEC XE window. With that it’s possible to visualize all data types

defined in the structure.

Direct Representation Variables: The “n” represents the configured value in the NX4010 module, through MasterTool
IEC XE software, as a %Q Start Address of Module Diagnostics. This definition is true for all diagnostics structure.

AT Directive: The AT directive is a word reserved in the programming software which is connected to a variable address.
In case of a NX4010 module the DG_NX4010 variable is related to the module diagnostics initial address.

The “sNETA_Diag” substructure has the following fields for NETA synchronism channels diagnostics:

DG_NX4010.tRedundancy.RedDgnLoc.sGeneral_Diag.bExchangeSync: When this diagnostic variable is with value
FALSE, is not possible to define the state of some other diagnostics, such as bIncompatibleFirmware, bApplicationProjectDiff
and bProjectArchiveDiff. There will not represent the correct value because they depend on the correct functioning of the
communication between the two CPUs, so that information can be correctly generated.

AT Variable
Direct Variable DG_NX4010.tRedundancy. Description
RedDgnLoc.sNETA_Diag.*
Variable Bit
TRUE - The synchronism channel has
0 bGeneralFailure some type of failure. The 3 next diagnos-
tics will indicate the specific failure.
FALSE - The synchronism channel is
working properly.
TRUE - The detected failure has its cause
1 blnternalFailure within this PLC. Such failures are treated

in a special way.

FALSE — The NX4010 module is working
properly.

%QBn+33) | 2

bLinkDownFailure

TRUE - The AL-2319A cable is discon-
nected from the NX4010 module or broken
in one of the PLCs.

FALSE — The AL-2319A cable is con-
nected to the NX4010 module.

3 bTimeoutFailure

TRUE - This failure is reported in case
a synchronization service hasn’t been fin-
ished successfully within a specific time-
out and failures from the type blnternal-
Failure or bLinkDownFailure haven’t been
found to justify that.

334

altus

6. REDUNDANCY WITH NX3030 CPU

AT
Direct Variable

Variable Bit

Variable

DG_NX4010.tRedundancy.
RedDgnLoc.sNETA Diag.*

Description

FALSE - The NX4010 module is working
properly.

4.7 bReserved|[4..7]

Reserved.

Table 207: NETA Interface Specific Diagnostics

The “sNETB_Diag” substructure has the following fields for NETB synchronism channels diagnostics:

AT Variable
Direct Variable DG_NX4010.tRedundancy. Description
RedDgnLoc.sNETB_Diag.*
Variable Bit
TRUE - The synchronism channel has
0 bGeneralFailure some type of failure. The 3 next diagnos-
tics will indicate the specific failure.
FALSE - The synchronism channel is
working properly.
TRUE - The detected failure has its cause
1 blnternalFailure within this PLC. Such failures are treated

in a special way.

FALSE — The NX4010 module is working
properly.

%QBn+34) | 2

bLinkDownFailure

TRUE — The AL-2319B cable is discon-
nected from the NX4010 module or broken
in one of the PLCs.

FALSE — The AL-2319B cable is con-
nected to the NX4010 module.

3 bTimeoutFailure

TRUE - This failure is reported in case
a synchronization service hasn’t been fin-
ished successfully within a specific time-
out and failures from the type blnternal-
Failure or bLinkDownFailure haven’t been
found to justify that.

FALSE — The NX4010 module is working
properly.

4.7 bReserved[4..7]

Reserved.

Table 208: NETB Interface Specific Diagnostics

The “sNET _Stat” substructure has service success and failure statistics. The local and remote PLCs statistics can be

restarted through commands:

//Local PLC

DG_NX4010.tRedundancy.RedCmdLoc.bResetNETStatisticsLocal := TRUE;

//Remote PLC

DG_NX4010.tRedundancy.RedCmdLoc.bResetNETStatisticsRemote := TRUE;

335

6. REDUNDANCY WITH NX3030 CPU

The substructure has the following counters:

Direct Vari- AT Variable
able DG_NX4010.tRedundancy. Red- | Description
DgnLoc.sNET_Stat.*
Success counting of the Diagnostics and
% QW (n+35) | wSuccessExchDgCmdSync Commands service (0 to 65535)
. Failure counting of the Diagnostics and
% QW (n+37) | wFailedExchDgCmdSync Commands service (0 to 65535)
Success counting of the Redundant Data
%QW@n+39) | wSuccessRedDataSync Synchronization service (0 to 65535)
. Failure counting of the Redundant Data
%QW(n+dl) | wFailedRedDataSync Synchronization service (0 to 65535)
Success counting of the Redundant Forc-
% QW (n+43) | wSuccessRedForceSync ing List Synchronization service (0 to
65535)
. Failure counting of the Redundant Forcing
%QW(n+45) | wFailedRedForceSync List Synchronization service (0 to 65535)

Note:

Table 209: Interface Specific Diagnostics

Counters: All counters return to zero when its limit value is exceeded.

The substructure “sGeneral_DiagExt” owns the following fields to general redundancy diagnostics:

Variable

Direct Variable

Bit

AT

.RedDgn-

Variable

DG_NX4010.tRedundancy

Loc.sGeneral_DiagExt.*

Description

bFailedPBUS3A

TRUE - This PLC can’t communicate in
the master state (active or passive) in the
PROFIBUS 3 A network. The master
mode (communicating with slaves) is as-
sumed by the Active PLC. The passive
mode (communicating with the active mas-
ter) is assumed by the Non-Active PLC.
This failure can also be indicated in case
the NX5001 module has a microproces-
sor failure, or in case it can’t communicate
with the NX3030 CPU via bus.

FALSE - There aren’t failures in the
PROFIBUS 3 A network.

bFailedPBUS3B

TRUE - This PLC can’t communicate in
the master state (active or passive) in the
PROFIBUS 3 B network. The master
mode (communicating with slaves) is as-
sumed by the Active PLC. The passive
mode (communicating with the active mas-
ter) is assumed by the Non-Active PLC.
This failure can also be indicated in case
the NX5001 module has a microproces-
sor failure, or in case it can’t communicate

with the NX3030 CPU via bus.

336

altus

6. REDUNDANCY WITH NX3030 CPU

AT

Direct Variable

Variable Bit

Variable

DG_NX4010.tRedundancy
.RedDgn-
Loc.sGeneral_DiagExt.*

Description

FALSE - There aren’t failures in the
PROFIBUS 3 B network.

2 bFailureProfibus_3

TRUE - This PLC can’t communi-
cate in the master state (active or pas-
sive) in the PROFIBUS 3 network.
In case the PROFIBUS 3 network is
redundant, FailurePROFIBUS_3 results
from an AND logic between FailedP-
BUS3A and FailedPBUS3B. In case
the PROFIBUS 3 network isn’t redun-
dant, FailurePROFIBUS_3 is a copy from
FailedPBUS3A.

FALSE - There aren’t failures in the
PROFIBUS 3 network.

%QBn+47) | 3

bFailedPBUS4A

TRUE - This PLC can’t communicate in
the master state (active or passive) in the
PROFIBUS 4 A network. The master
mode (communicating with slaves) is as-
sumed by the Active PLC. The passive
mode (communicating with the active mas-
ter) is assumed by the Non-Active PLC.
This failure can also be indicated in case
the NX5001 module has a microproces-
sor failure, or in case it can’t communicate
with the NX3030 CPU via bus.

FALSE - There aren’t failures in the
PROFIBUS 4 A network.

4 bFailedPBUS4B

TRUE - This PLC can’t communicate in
the master state (active or passive) in the
PROFIBUS 4 B network. The master
mode (communicating with slaves) is as-
sumed by the Active PLC. The passive
mode (communicating with the active mas-
ter) is assumed by the Non-Active PLC.
This failure can also be indicated in case
the NX5001 module has a microproces-
sor failure, or in case it can’t communicate
with the NX3030 CPU via bus.

FALSE - There aren’t failures in the
PROFIBUS 4 B network.

5 bFailureProfibus_4

TRUE - This PLC can’t communi-
cate in the master state (active or pas-
sive) in the PROFIBUS 4 network.
In case the PROFIBUS 4 network is
redundant, FailurePROFIBUS_4 results
from an AND logic between FailedP-
BUS4A and FailedPBUS4B. In case
the PROFIBUS 4 network isn’t redun-
dant, FailurePROFIBUS_4 is a copy from
FailedPBUS4A.

337

6. REDUNDANCY WITH NX3030 CPU

AT Variable
DG_NX4010.tRedundancy
.RedDgn-
Loc.sGeneral_DiagExt.*

Direct Variable Description

Variable Bit

FALSE - There aren’t failures in the
PROFIBUS 4 network.

TRUE - There is a failure in some commu-
nication fieldbus. As an example, an Eth-
ernet port with MODBUS protocol config-
ured to vital failure.

FALSE - No fieldbus has failures.

TRUE - There is a failure in all fieldbus
communication. As example, NET 1 and
NET 2 are configured to vital and both are
in failure.

FALSE — There is at least one communica-
tion fieldbus working without failure.

6 bFailureCommBusAny

7 bFailureCommBusAll

Communication fieldbus quantity, which
are reporting failures.

TRUE — The NX3030 CPU is receiving
Keep Alive packets from the other half-
cluster’s CPU, through NET 1. The Keep
Alive packets are only sent in projects
that don’t use the PX2612 panel and that
haven’t a PROFIBUS network.

FALSE - Keep Alive packets aren’t being
received.

TRUE - The NX3030 CPU is receiving
% QB(n+49) 1 bRemCpuKeepAliveNet2 Keep Alive packets from the other half-
cluster’s CPU, through NET 2.

FALSE - Keep Alive packets aren’t being
received.

Bits reserved to future use. They aren’t
shown at the symbolic structure (hidden).

% QB(n+48) - byFailedCommBusCount

0 bRemCpuKeepAliveNet1

2.7 (Occulted reserved bits)

5 reserved bytes to future use. They aren’t

% QB (n+50)) abyReservedBytes[1..5] shown at the symbolic structure (hidden).

Table 210: General Redundancy Diagnostics, Extended Part

6.6.4.2. Redundancy Commands

The structure command fields RedCmdLoc and RedCmdRem have a suffix which can be Local or Remote. E.g. there are
the command fields StandbyLocal and StandbyRemote that have equivalent effect to the PX2612 panel STAND-BY button.

A command with Local suffix generated in RedCmdLoc must be executed in the local PLC (local). On the other hand, a
command with Remote suffix generated in RedCmdLoc will be executed in another PLC (remote). This works as the following:

= The remote PLC, each MainTask cycle, receives the RecCmdLoc copy from the local PLC through NETA / NETB, and
this copy is called RedCmdRem in it

= The remote PLC only executes the RedCmdRem commands with the Remote suffix

Example 1: if the local PLC is in Active state, and it’s desired to switch it to the Stand-by state, the DG_NX4010.tRedundancy
.RedCmdLoc.bStandbyLocal bit can be turned on in it.

Example 2: if the remote PLC is in Active state, and it’s desired to switch it to the Stand-by state, the DG_NX4010.tRedundancy
.RedCmdLoc.bStandbyRemote bit can be turned on in the local PLC. This may be useful, for instance, if the communication
of a SCADA system is temporarily unavailable with the remote PLC. In this case, the command is written by the SCADA in
the local PLC that retransmits to the remote PLC through NETA / NETB.

338 altus

——

6. REDUNDANCY WITH NX3030 CPU

If the DG_NX4010.tRedundancy.RedDgnLoc.sGeneral_Diag.bExchangeSync diagnostic is
indicating a Diagnostics and Commands Exchange service failure, a command with Remote
suffix isn’t allowed to be transmitted to the remote PLC, thus, won’t be executed.

To trigger a command, the RedCmdLoc correspondent bit must be turned on. This can be done through a SCADA system,
executing writing via MasterTool or even turning the bit on inside a POU as ActivePrg or NonSkippedPrg.

The user doesn’t need to worry with the command bit deactivating, which is automatically done by the redundancy man-
ager:

» In case of commands executed in the local PLC (RedCmdLoc + commands with Local suffix), the bit is turned off as
soon as the command is seen and executed

= In case of commands executed in the remote PLC (RedCmdRem + commands with Remote suffix):

¢ In the remote PLC, the command is executed when the redundancy manager sees an up-going edge in the command
bit
* In the local PLC where the command was generated, the bit is turned off automatically in the next MainTask cycle

There are two command bits which normally must be turned off by
the user: DG_NX4010.tRedundancy.RedCmdLoc.bTestModeLocal and
DG_NX4010.tRedundancy.RedCmdLoc.bTestRelayLocal. Further details regarding
these commands are described ahead in this section. In case the user forgets to turn them
off, there are automatic mechanisms which are supposed to do it instead.

It’s important to stress that any command activating or deactivating are registered in the Redundancy Event Log, which is
important for the history analysis, e.g. to determine a switchover cause.

Next, the RedCmdLoc and RedCmdRem structure fields are defined:

AT variable
Direct Variable DG_NX4010.tRedundancy. Description
RedCmdLoc.*

Variable Bit

TRUE - It’s a processed copy from the
TURN ON PLCX button written on the
PX2612 panel. This bit is activated 1 sec-
ond after the button pressing and deacti-
0 bButtonTurnOnLocal vated immediately at its releasing. It’s im-
portant to stress that this bit will be acti-
vated when the TURN ON button on the
remote PLC is pressed, as this type of com-
mand is always sent by the remote PLC.
FALSE - The button TURN ON PLCX
isn’t pressed.

TRUE - It’s a processed copy from the
STAND-BY button written on the PX2612
1 bButtonStandbyLocal panel. This bit is activated 1 second after
the button pressing and deactivated imme-
diately at its releasing.

FALSE - The button STAND-BY isn’t
pressed.

TRUE - It’s a processed copy from the
INACTIVE button written on the PX2612
2 bButtonInactiveLocal panel. This bit is activated 1 second after
the button pressing and deactivated imme-
diately at its releasing.

FALSE - The button INACTIVE isn’t
pressed.

339

Q
=
G

\

6. REDUNDANCY WITH NX3030 CPU

Description

TRUE - This diagnostics inform an auto-
matic configuration request, necessary to
let the Not-Configured state in some situ-
ations.

FALSE — Automatic configuration request
disabled.

TRUE — This command produces an equiv-
alent action to the TURN ON PLCX button
on the PX2612 in the local PLC.

FALSE — The TURN ON PLCX button on
the local PLC isn’t pressed.

TRUE — This command produces an equiv-
alent action to the STAND-BY button on
the PX2612 in the local PLC.

FALSE — The STAND-BY button on the
local PLC isn’t pressed.

TRUE — This command produces an equiv-
alent action to the INACTIVE button on
the PX2612 in the local PLC.

FALSE - The INACTIVE button on the lo-
cal PLC isn’t pressed.

TRUE - This command resets the NETA
/ NETB statistics (see substructure
SNET_Stat in RedDgnLoc and Red-
DgnRem). Such statistics are failure
and success counters in synchronization
services.

FALSE — The reset commands for the
NETA / NETB statistics in the local PLC
wasn’t activated.

AT variable
Direct Variable DG_NX4010.tRedundancy.
RedCmdLoc.*
Variable Bit
% QB (n+55) 3 bAutoConfiglocal
4 bTurnOnLocal
5 bStandbyLocal
6 bInactiveLocal
7 bResetNET StatisticsLocal
0 bTestModeLocal

TRUE - This command puts the PX2612
panel in test mode, allowing its com-
ponents to be tested (LEDs, relays and
buttons), as explained in PX2612 Panel
Test section. The PX2612 test mode is
only accepted when this bit is on both
PLCs. Therefore, for the PX2612 to
be in test mode, the PLC wverifies if
RedCmdLoc.TestModeLocal and RedCm-
dRem.TestModeLocal are both on. The
RedDgnLoc.RedPanelTestMode diagnos-
tic is turned on to inform that the PX2612
is really in test mode. Normally the user
must turn off the TestModeLocal bit on
both PLCs as soon as the PX2612 tests are
concluded, but in case he forgets to do that,
the bit will be turned off automatically 15
minutes after being turned on.

FALSE - The command which puts the
PX2612 panel in test mode is deactivated.

340

6. REDUNDANCY WITH NX3030 CPU

AT variable
Direct Variable DG_NX4010.tRedundancy. Description
RedCmdLoc.*

Variable Bit

TRUE - This command is used to test
the PX2612 NO relay and, consequently,
the external NC relay too, used to, even-
tually, turn off the other PLC. This com-
mand is only accepted while the PX2612 is
in test mode, being automatically switched
off and ignored if the PX2612 isn’t in this
1 bTestRelayLocal mode. Normally, the user must turn off the
TestRelayLocal bit as soon as the relay test
is concluded, but if it’s forgotten, the bit
is turned off as soon as the test mode is
finished. It’s important to stress this com-
mand is only accepted in the Active PLC,
to avoid the Non-Active PLC to switch it
off.

FALSE — The command used to test the
PX2612 NO relay is deactivated.

TRUE — This command produces an equiv-
% QB(n+56) 2 bStandbyRemote alent action to the STAND-BY button on
the PX2612 in the remote PLC.

FALSE — The STAND-BY button on the
remote PLC isn’t pressed.

TRUE — This command produces an equiv-
3 blnactiveRemote alent action to the INACTIVE button on
the PX2612 in the remote PLC.

FALSE - The INACTIVE button on the re-
mote PLC isn’t pressed.

TRUE — This command produces an equiv-
alent action to the ResetNETStatisticsL.o-
cal button on the PX2612 in the remote
PLC.

FALSE - The reset commands for the
NETA / NETB statistics in the remote PLC
wasn’t activated.

5.7 bReserved[5..7] Reserved.

4 bResetNET StatisticsRemote

Table 211: Redundancy Commands

6.6.4.3. User Information Exchanged between PLCA and PLCB

The Diagnostics and Commands Exchange Synchronization service, in each MainTask cycle, exchange the following data
structures between both PLCs, using the NETA / NETB synchronism channels:

= Redundancy Diagnostics (RedDgnLoc and RedDgnRem), already described in the Redundancy Diagnostics Structure
section

» Redundancy Commands (RedCmdLoc and RedCmdRem), already described in the Redundancy Commands section

= User Information Exchanged between PLCA and PLCB (RedUsrLoc and RedUsrRem), which are described in this
section

The RedUsrLoc and RedUsrRem structures are simply a 128 bytes array, which utilization can be freely defined by the
user. They allow the user to transfer, each cycle, 128 bytes of information from PLCA to PLCB, and other 128 bytes from
PLCB to PLCA.

RedUsrRem is a copy from the other PLC RedUsrLoc, received through NETA / NETB. A specific PLC writes information
on RedUsrLoc, which are read in the RedUsrRem of the other PLC.

341 altus

——

6. REDUNDANCY WITH NX3030 CPU

These data structures have many utilities. E.g. supposing the SCADA system is connected only to the Active PLC and it’s
desired to visualize some information from the Non-Active PLC. The Non-Active PLC can put this information in these data
structures. Among such information, for instance, might be some not mapped diagnostics in RedDgnLoc and RedDgnRem.

6.6.4.4. Modbus Diagnostics used at Redundancy

To check for failure in all MODBUS Server configured in a MODBUS Client instance, there is a specific diagnosis in each
MODBUS Client instance configured. The table below displays the diagnostics for this type of failure in a MODBUS Client
instance called MODBUS_Symbol_Client.

Variable
DG_MODBUS_Symbol _ Description
Client.tDiag.*

TRUE - All servers configured at this
Client shows error.

FALSE - There is at least one Server con-
figured in this Client that doesn’t shows er-
TOor.

bAllDevicesCommPFailure

Table 212: Modbus Client Diagnostic

When configured vital failure mode, this diagnostic is consulted and 3 seconds after it’s state change from FALSE to TRUE,
a switchover occurs if the other conditions for this event are satisfied.

6.6.4.5. Redundancy Event Log

MasterTool allows the observation of several logs for the Nexto PLC, among them the Redundancy Event Log. These
messages, specific for redundancy, register in the System Log relevant modifications in the diagnostics data structure fields and
redundancy commands structure data.

Each line presented in the log has the following columns:

= Time Stamp: event time and date, with resolution in milliseconds

= Severity: information, warning, error or exception

= Description: text that describes the event

= Component: component that has generated the event, and in the Redundancy Event Log case, is “Redundancy Manage-
ment”’

The “Description” column text has information about the event that happened.
An example of the Description column can be the following:

Redundancy new state (local): Starting

To access this screen, a double click must be done on the device (NX3030) in the device tree, and then the tab “Log” must
be selected. There’s a filter that allows selecting only the “Redundancy Management” component, to show only the redundancy
events.

Some diagnostics may point to possible failures during the redundant system initialization
and in the tasks first cycles. But in a correct system function these diagnostics no longer
indicate errors right after the system initialization.

6.6.5. PX2612 Panel Test

The PX2612 panel is composed by buttons, LEDs and relays. Many of these resources are not used very often, thus are
rarely tested and the defects may not be detected. It’s important to run tests from time to time in order to verify if these
resources are working properly, to avoid obscure failures to prevent the PX2612 use when it’s necessary.

342

Q
=
G

\

6. REDUNDANCY WITH NX3030 CPU

6.6.5.1. Test Mode Entry

The first step to test the PX2612 is to set it to test mode. This is done turning on the DG_NX4010.tRedundancy.RedCmdLoc
.bTestModeLocal command bit on both PLCs.
The PLC perceives that is in test mode when the following two bits are on:

» DG_NX4010.tRedundancy.RedCmdLoc.bTestModeLocal (RedCmdLoc.bTestModeLocal on in this PLC)
= DG_NX4010.tRedundancy.RedCmdRem.bTestModeLocal (RedCmdLoc.bTestModeLocal on in the other PLC)

When both bits are on, the PLC turns on the DG_NX4010.tRedundancy.RedDgnLoc.sGeneral_Diag.bRedPanelTestMode
diagnostic, to inform that the PX2612 is in test mode.

6.6.5.2. Test Mode Manual and Automatic Outputs
The user can finish the test mode manually, turning off the DG_NX4010.tRedundancy.RedCmdLoc.bTestModeLocal bit

in both PLCs. Actually turning it off in just one PLC is enough, as the test mode demands this bit to be on in both PLCs.
However, this practice is recommended.

In case the user forgets to turn off the DG_NX4010.tRedundancy.RedCmdLoc.bTestModeLocal bit, it’s automatically
turned off 15 minutes after being turned on, finishing automatically the test mode.

6.6.5.3. LEDs Testing

Thus, during the test mode, the 6 LEDs must blink, losing its normal utility, which is showing the redundancy state.

6.6.5.4. Buttons Test

At pressing a button in the test mode, a correspondent LED stops blinking, and remains on. The following table presents
the connection between the pressed button and the LED which remains on.

Tested button Correspondent LED
TURN ON PLC A ACTIVE PLC B
STAND-BY PLC A STAND-BY PLC A
INACTIVE PLC A INACTIVE PLC A
TURN ON PLC B ACTIVEPLC A
STAND-BY PLC B STAND-BY PLC B
INACTIVE PLC B INACTIVE PLC B

Table 213: Connection between buttons and LEDs in the PX2612 button test

It can be observed that normally the LED is on the pressed button side, except for the TURN ON PLCx.
Before the LED remains on, it’s necessary to hold the button for, at least, 1 second. The LED returns to blinking after it’s
released.

During the test mode, the buttons don’t allow the execution of functions which would be executed out of this mode, such
as to cause a redundancy state change.

6.6.5.5. Relay Test

To test the relays, it was created the DG_NX4010.tRedundancy.RedCmdLoc.bTestRelayLocal bit. At turning on this bit,
if the PLC is in test mode and in Active state, it activates the relay, which must cause the other PLC (Non-Active) switching
off. Turning off the DG_NX4010.tRedundancy.RedCmdLoc.bTestRelayLocal, the relay is released, allowing the other PLC
reactivating.

The command has no effect in the Non-Active PLC, to prevent it turns off the Active PLC.
The user must cause a switchover between PLCs (Active x Non-Active) in order to test the relay in both PLCs.

When the PLC which was switched off is reactivated and restarted, it returns with the DG_NX4010.tRedundancy.RedCmdLoc
.bTestModeLocal off, thus the test mode is canceled. The DG_NX4010.tRedundancy.RedCmdLoc.bTestModeLocal bit must
be turned on again in this PLC and set it to Active state before testing its relay.

When the test mode is finished, the DG_NX4010.tRedundancy.RedCmdLoc.bTestRelayLocal command bit is automati-
cally turned off, in case the user has forgotten it on.

343 altus

gt

6. REDUNDANCY WITH NX3030 CPU

6.6.5.6. Suggested Sequence for PX2612 Test Executing

The following sequence is suggested in order to execute the PX2612 tests:

Turn on the DG_NX4010.tRedundancy.RedCmdLoc.bTestModeLocal command bit in both PLCs (PLCA and PLCB).
It must be observed if the 6 LEDs are blinking.
Press, one at a time, the 6 buttons and verify if the correspondent LED stops blinking and remain on while the button is

pressed. It must be remembered the button must remain pressed for, at least, one second before the LED stops blinking
and remains on, and that the LED returns to blinking after the button is released.

Turn on the DG_NX4010.tRedundancy.RedCmdLoc.bTestRelayLocal command bit in the Active PLC. It must be ob-
served the Non-Active PLC switching off.

Turn off the DG_NX4010.tRedundancy.RedCmdLoc.bTestRelayLocal command bit in the Active PLC. It must be ob-
served the Non-Active PLC switching on.

Wait until the Non-Active PLC is restarted and assumes the Stand-by state. The test mode is active as the DG_NX4010
.tRedundancy.RedCmdLoc.bTestModeLocal bit is turned off at the restarting in Stand-by mode PLC.

Cause a switchover between PLCs, pressing the Active PLC STAND-BY button. The normal use of the STAND-BY
button is possible because the test mode isn’t active.

Turn on the DG_NX4010.tRedundancy.RedCmdLoc.bTestModeLocal command bit in the new Active PLC, which has
just gotten out the Stand-by state. This way, the test mode is reactivated.

Turn on the DG_NX4010.tRedundancy.RedCmdLoc.bTestRelayLocal command bit in the Active PLC. It must be ob-
served the Non-Active PLC switching off.

Turn off the DG_NX4010.tRedundancy.RedCmdLoc.bTestRelayLocal command bit in the Active PLC. It must be ob-
served the Non-Active PLC reactivating.

Turn off the DG_NX4010.tRedundancy.RedCmdLoc.bTestModeLocal command bit in the Active PLC, to finish the test
mode. It’s not necessary to do this in the Stand-by PLC, as it has just initialized, with the DG_NX4010.tRedundancy
.RedCmdLoc.bTestModeLocal bit off.

7. MAINTENANCE

7. Maintenance

One feature of the Nexto Series is the abnormality diagnostic generation, whether they are failures, errors or operation
modes, allowing the operator to identify and solve problems which occurs in the system easily.

The Nexto CPUs permit many ways to visualize the diagnostics generated by the system, which are:

One Touch Diag

Diagnostics via LED

Diagnostics via System Web Page
Diagnostics via Variables
Diagnostics via Function Blocks

The first one is an innovating feature of Nexto Series, which allows a fast access to the application abnormal conditions.
The second is purely visual, generated through two LEDs placed on the panel (DG and WD) and also through the LEDs placed
in the RJ45 connector (exclusive for Ethernet connection). The next feature is the graphic visualization in a WEB page of the
rack and the respective configured modules, with the individual access allowed of the operation state and the active diagnostics.
The diagnostics are also stored directly in the CPU variables, either direct representation (%Q) or attributed (AT variable), and
can be used by the user application, for instance, being presented in a supervisory system. The last ones present specific
conditions of the system functioning.

These diagnostics function is to point possible system installation or configuration problems, and communication network
problems or deficiency.

7.1. Module Diagnostics
7.1.1. One Touch Diag

The One Touch Diag (OTD), or single touch diagnostics, is an exclusive feature the Nexto Series brings for the pro-
grammable controllers. With this new concept the user can verify the diagnostics of any module connected to the system
straight on the CPU graphic display with a single touch on the module Diagnostic Switch. This is a powerful diagnostic tool
which can be used offline (with no need of supervisory or programming software) making easier to find and solve quickly
possible problems.

The diagnostics key is placed on the CPU upper part, in an easy access place and, besides giving active diagnostics, allows
the access to the navigation menu, described in the Configuration — CPU’s Informative and Configuration Menu section.

The figure below shows the CPU switch placement:

DIAGNOSTIC SWITCH

Figure 184: Diagnostic Switch

With only a short touch, the CPU starts to show the bus diagnostics (when active, otherwise shows the “NO DIAG”
message). Initially, the Tag is visualized (configured in the module properties in the MasterTool IEC XE software, following

345 altus

——

7. MAINTENANCE

the IEC 61131-3 standard), in other words, the name attributed to the CPU, and after that all diagnostics are shown, through
CPU display messages. This process is executed twice on the display. Everything occurs automatically as the user only has to
execute the first short touch and the CPU is responsible to show the diagnostics. The diagnostics of other modules present on
the bus are also shown on the CPU graphic display by a short press in the diagnostic module button, in the same presentation
model of diagnostics.

The figure below shows the process starting with the short touch, with the conditions and the CPU times presented in
smaller rectangles. It is important to stress the diagnostics may have more than one screen, in other words, the specified time
in the block diagram below is valid for one of them.

LEVEL 1
Short

Press
STATUS SCREEN | —p{TAG UCP |<

? Delay 2s

DIAGNOSTIC 1

§

Delay 2s

§

DIAGNOSTIC 2

]

Delay 2s

h 4
DIAGNOSTIC 3

Delay 2s

]

~
DIAGNOSTIC “N”

h 4

Delay 2s

Twice?

11032106C

<
Figure 185: CPU Diagnostics Visualization

Before all visualization process be concluded, it is just to give a short touch on the diagnostic switch, at any moment, or
press the diagnostic switch from any I/O module connected to the bus. Also, it is important to observe that the One Touch Diag
could be available when the module could be in Operational Mode.

In case a long touch is executed, the CPU goes to navigation menu, which is described in the Configuration — CPU’s
Informative and Configuration Menu section.

346 altus

——

7. MAINTENANCE

The table below shows the difference between the short touch time, the long touch time and stuck button.

Touch type Minimum time | Maximum time | Indication condition
No touch - 59.99 ms -
Short touch 60 ms 0.99s Release
Long touch Is 20s More than 1 s till 20 s
. Diagnostics indication, see
Locked Switch 20.01 s (c0) on Table 219

Table 214: One Touch Time

The messages presented on the Nexto CPU graphic display, correspondent to the diagnostics, are described in the Diag-
nostics via Variables section, on Table 219.

If any situation of stuck button occur in one of the I/O modules, the diagnostic button of this module will stop of indicate
the diagnostics on CPU graphic display when is pressed. In this case, the CPU will indicate that there is a module with active
diagnostics. To remove this diagnostic from the CPU, a hot swap must be done in the module where the diagnostic is active.

For further details on the procedure for viewing the diagnostics of the CPU or other bus modules, see description in the
User Manual Nexto Series — MU214600.

7.1.2. Diagnostics via LED

This product have a LED for diagnostic indication (LED DG) and a LED for watchdog event indication (LED WD). The
Tables 215 and 216 show the meaning of each state and its respective descriptions.

7.1.2.1. DG (Diagnostic)
Green Red Description Causes Priority
off off Not used No power supply. | _
Hardware problem
All applications
On Off in execution mode | - 3 (Low)
(Run)
All applications
Off On in stopping mode | - 3 (Low)
(Stop)
At least, a bus mod-
. 1. Bus modules with di- | ule, including the
LAl 2 it agnostic CPU, is Witgh an !
active diagnostic
Some memory area is
Blinking 3x | Off Data forcing E::r‘gthfzﬁ;fhzstt;f 2
Tool IEC XE
Configuration or | The bus is damaged
Off Blinking 4x hardware error in the | or is not properly | 0 (High)
bus configured

Table 215: Description of the Diagnostic LEDs States

347

altus

7. MAINTENANCE

7.1.2.2. WD (Watchdog)

Red LED Description Causes Priority

Off E(c))nwatchdog indica- | ol operation 3 (Low)

Blinking 1x Software watchdog User application 2
watchdog

Damaged module
On Hardware watchdog and/or corrupted | 1 (High)
operational system

Table 216: Description of the Watchdog LED States

Notes:

Software Watchdog: In order to remove the watchdog indication, make an application reset or turn off and turn on the
CPU again. This watchdog occurs when the user application execution time is higher than the configured watchdog time.

The diagnostics can be checked in the Exception.wExceptionCode variable, see on Table 223.

Hardware Watchdog: In order to reset any watchdog indication, as in the WD LED or in the Reset.bWatchdogReset
operand, the module must be disconnected from the power supply.

In order to verify the application conditions in the module restart, see configurations on Table 44.

7.1.2.3. RJ45 Connector LEDs

Both LEDs placed in the RJ45 connectors, help the user in the installed physical network problem detection, indicating the
network Link speed and the existence of interface communication traffic. The LEDs meaning is presented on table below.

Yellow | Green Meaning
o o Network LINK absent
° o 10 Mbytes/s network LINK
° ° 100 Mbytes/s network LINK

Ethernet network transmission or reception occurrence,
for or to this IP address. Blinks on Nexto CPU demand
X - and not every transmission or reception, in other words, it
may blink on a lower frequency than the real transmission
or reception frequency

Table 217: Ethernet LEDs Meaning

7.1.3. Diagnostics via System Web Page

Besides the previously presented features, the Nexto Series brings to the user an innovating access tool to the system
diagnostics and operation states, through a System Web Page.

The utilization, besides being dynamic, is very intuitive and facilitates the user operations. The use of a supervisory system
can be replaced when it is restricted to system status verification.

To access the desired CPU’s System Web Page, it is just to use a standard browser (Internet Explorer 7 or superior,
Mozilla Firefox 3.0 or superior and Google Chrome 8 or superior) and type, on the address bar, the CPU IP address (Ex.:
http://192.168.1.1). First, the CPU information is presented, according to Figure 186:

http://192.168.1.1

7. MAINTENANCE

English | Espafial | Partugués

e
CPU Overview System Overview CPU Management

CPU Overview

(@) Urcated on 16ih October 2023, 14:52:22. To refresh this page cick on the icon

NX3010

o
bl
&

Description Nexto CPU

o

Configured Racks

=

Y

Firmware Version 1.10.11.0

Bootloader Version 1.0.0.6
Auxiliar Processor Version 1.0.01

Application State Stop

Y

Active Diagnostics

=
o

Forced Values

Figure 186: Initial Screen

There is also the Bus Information tab, which can be visualized through the Rack or the present module list (option on the
screen right side). While there is no application on the CPU, this page will display a configuration with the largest available
rack and a standard power supply, connected with the CPU. When the Rack visualization is used, the modules that have
diagnostics blink and assume the red color, as shown on Figure 187. Otherwise a list with the system connected modules, Tags
and active diagnostics number is presented:

English | Espafiol | Portugués

A——
CPU Overview System Overview CPU Management

Overview

(§) Updated on 6ih October 2023, 13:56:25. To refresh this page click on the icon

Diagnostics. Status

Diagnostic list >> Rack 0

Figure 187: System Information

When the module with diagnostics is pressed, the module active(s) diagnostic(s) are shown, as illustrated on Figure 188:

When a CPU is restarted and the application goes to exception in the system’s startup, the
diagnostics will not be valid. It is necessary to fix the problem which generates the applica-
tion’s exception so that the diagnostics are updated.

349

Q
=
G

\

7. MAINTENANCE

English | Espadicl | Portugués

=
CPU Overview CPU Management

System Overview

(&) Upsared on 6 October 2023, 1356:36 To refesh tispage ek on the can
Diagnostics Status

Diagnostic list >> Rack 0 >> NX3010 @ Slot 2

“*

m Diagnostic

00 OTD switch error

Figure 188: System Diagnostics

In case the Status tab is selected, the state of all detailed diagnostics is shown on the screen, as illustrated on Figure 189:

English | Espaficl | Portugués

—_—
CPUOverview | System Overview | CPU Management

System Overview

(§) Updotes o 5 Cotir 025, 1357:85 7 rashs s e siccon oo

Diagnostics Status

Status list >> Rack 0 >> NX3010 @ Slot 2

00 CONFIG - There are not errors in bus configuration

o1 CONFIG - There are not declared modules absent in the bus

02 CONFIG - There are not swapped modules in the bus

03 CONFIG - There are not non-declared modules present in the bus
04 CONFIG - There are not modules with active diagnostics

05 CONFIG - There are not modules in non-operational state

06 CONFIG - There are not modules with parameters error in the bus
o7 CPU - Bus access hardware is operational

08 CPU - Internal hardware is oparational

09 CPU - Internal software is in normal execution state

10 CPU - Memory card interface is operational

1 CONFIG - COM 1 configuration has no error(s)

12 CONFIG - COM 2 configuration has no error(s)

13 CONFIG - NET 1 configuration has no errors v

Figure 189: System Status

The user can choose to visualize two language options: Portuguese and English. Simply change in the upper right part of
the screen to the desired language.

7.1.4. Diagnostics via Variables

The Nexto Series CPUs have many variables for diagnostic indication. There are data structures with the diagnostics of all
modules declared on the bus, mapped on the variables of direct representation %Q, and defined symbolically through the AT
directive, in the GVL System_Diagnostics created automatically by the MasterTool IEC XE.

The table below summarizes the diagnostic byte/words division:

350

Q
=
G

\

7. MAINTENANCE

Byte

Description

0to3 | CPU summarized diagnostics.

4 to 693

CPU detailed diagnostics.

7.1.4.1. Summarized Diagnostics

Table 218: CPU Diagnostics Division

The table below shows the meaning of each CPU summarized diagnostic bit:

q . Diagnostics Mes- | AT Variable ..
Direct Variable . DG_Module.tSummarized.” Description
Variable Bit
- - NO DIAG - There is no active diagnostic.
TRUE - There is a configuration problem
0 CONFIG. bConfigMismatch in the bus, as the module inserted in the
MISMATCH wrong position.
FALSE — The bus is configured correctly.
| ABSENT bAbsentModules TRUE — One or more declared modules are
MODULES absent.
FALSE - All declared modules were de-
tected in the bus.
) SWAPPED bSwappedModules TRUE — There are changed modules in the
MODULES bus.
FALSE — There are no changed modules in
the bus.
%QB(n) 3 NON-DECLARED bNonDeclaredModules TRUE — One or more modules in the bus
MODULES were not declared in the configuration.
FALSE — All modules were declared.
4 MODULES W/ bModulesWithDiagnostic TRUE — One or more modules in the bus
DIAGNOSTICS are with active diagnostic.
FALSE - There is no active diagnostic in
the modules in the bus.
5 MODULES W/ bModuleFatalError TRUE — One or more modules in the bus
FATAL ERROR are in fatal error.
FALSE - All modules are working prop-
erly.
6 MODULES W/ bModuleParameterError TRUE — One or more modules in the bus
PARAM. ERROR have parameterization error.
FALSE — All modules are parameterized.
7 BUS bWHSBBusError TRUE — Master indication there is failure
FALSE — The WHSB bus is working prop-
erly.
0 HARDWARE bHardwareFailure TRUE — CPU hardware failure.
FAILURE
FALSE — The hardware is working prop-
erly.
| SOFTWARE bSoftwareException TRUE — One or more exceptions generated
351

altus

7. MAINTENANCE

Direct Variable

Variable Bit

Diagnostics Mes-

sage

AT Variable
DG_Module.tSummarized.*

Description

FALSE - No exceptions generated in the
software.

HARDWARE
WATCHDOG

bHwWatchdogReset

TRUE - The CPU restarted by hardware
watchdog at least once.

FALSE - The CPU is operating normally.

%QBm+1) | 3

ERROR IN
MEMORY CARD

bMemoryCardError

TRUE - The memory card is inserted in the
CPU, but is not working properly.

FALSE — The memory card is working
properly.

COM1 CONFE
ERROR

bCOM 1 ConfigError

TRUE — Some error occurred during, or af-
ter, the COM 1 serial interface configura-
tion.

FALSE — The COM 1 serial interface con-
figuration is correct.

COM2 CONF.
ERROR

bCOM2ConfigError

TRUE — Some error occurred during, or af-
ter, the COM 2 serial interface configura-
tion.

FALSE — The COM 2 serial interface con-
figuration is correct.

NET1 CONF.
ERROR

bNET1ConfigError

TRUE - Some error occurred during, or af-
ter, the NET 1 Ethernet interface configu-
ration.

FALSE - The NET 1 Ethernet interface
configuration is correct.

NET2 CONF.
ERROR

bNET2ConfigError

TRUE - Some error occurred during, or af-
ter, the NET 2 Ethernet interface configu-
ration.

FALSE — The NET 2 Ethernet interface
configuration is correct.

INVALID
DATE/TIME

blnvalidDateTime

TRUE — The date or hour are invalid.

FALSE — The date and hour are correct.

RUNTIME RESET

bRTSReset

TRUE — The RTS (Runtime System) has
been restarted at least once. This diagnos-
tics is only cleared in the system restart.

FALSE — The RTS (Runtime System) is
operating normally.

% QB(n+2) 2

OTD SWITCH
ERROR

bOTDSwitchError

TRUE — True in case the OTD key has been
locked for more than 20 s at least once
while the CPU was energized. This diag-
nostic is only cleared in the system restart.

FALSE - The key is not currently locked or
was locked while the CPU was energized.

ABSENT
RACK

bAbsentRacks

TRUE - One or more declared racks are
absent.

FALSE — There are no absent racks.

DUPLICATED
RACK

bDuplicatedRacks

TRUE — There are racks with a duplicated
identification number.

FALSE - There are no racks with a dupli-
cated identification number.

352

altus

7. MAINTENANCE

. . Diagnostics Mes- | AT Variable ..
Direct Variable o DG_Module.tSummarized.* Description
Variable Bit
%QB(n+3)) INVALID bInvalidRacks TRUE - There are racks with an invalid
RACK identification number.
FALSE - There are no racks with an in-
valid identification number.
3 NON DECLARED bNonDeclaredRacks TRUE - There are racks with a non-
RACK declared identification number.
FALSE — There are no racks with a non-
declared identification number.
4 DUPLICATED bDunlicatedSlots TRUE — There are some duplicated slot ad-
SLOT P dress.
FALSE - There are no duplicated slot ad-
dress.

Table 219: CPU Summarized Diagnostics

Notes:

Direct Representation Variable: "n" represents the value set in the CPU through the MasterTool IEC XE software, such
as initial address diagnostics.

AT Directive: In the description of the symbolic variables which use the AT directive to make the mapping in direct
addressing variables, the syntax that must be put before the desired summarized diagnostic is DG_Module.tSummarized,
when the Module word is replaced by the used CPU. E.g. for the incompatible configuration diagnostic it must be used the
variable: DG_NX3010.tSummarized.bConfigMismatch. The AT directive is a word reserved in the programming software,
used only for diagnostic indication.

Configuration Mismatch: The incompatible configuration diagnostic is generated if one or more modules of the rack
does not correspond to the declared one, so, in the absence or different modules conditions. The modules inserted in the bus
that were not declared in the project are not considered.

Swapped Modules: If only two modules are changed between themselves in the bus, then changed diagnostic can be
identified. Otherwise, the problem is treated as “Incompatible Configuration”.

Modules with Fatal Error: In case the modules with fatal error diagnostic is true, it must be verified which is the
problematic module in the bus and send it to Altus Technical Assistance, as it has hardware failure.

Module with Parameterization Error: In case the parameterization error diagnostic is true, it must be verified the module
in the bus are correctly configured and if the firmware and MasterTool IEC XE software version are correct. If the problem
occurred when inserting a module on the bus, make sure the module supports hot swapping.

Bus Error: Considered a fatal error, interrupting the access to the modules in the bus. In case the bus error diagnostic is
true, an abnormal situation due to the hot exchange configuration selected might have occurred or a hardware problem in the
bus communication lines, then, contact Altus Technical Assistance.

Hardware Failure: In case the Hardware Failure diagnostic is true, the CPU must be sent to Altus Technical Assistance,
as it has problems in the RTC, auxiliary processor, or other hardware resources.

Software Exception: In case the software exception diagnostic is true, the user must verify his application to guarantee
it is not accessing the memory wrongly. If the problem remains, the Altus Technical Support sector must be consulted. The
software exception codes are described next in the CPU detailed diagnostics table.

Diagnostic Message: The diagnostics messages can be visualized by the CPU graphic display using the OTD key or using
the CPU’s System Web Page.

7. MAINTENANCE

7.1.4.2. Detailed Diagnostics

The tables below contain Nexto Series’ CPUs detailed diagnostics. It is important to have in mind the observations below
before consulting them:

= Visualization of the Diagnostics Structures: The Diagnostics Structures added to the Project can be seen at the item
“Library Manager” of MasterTool IEC XE tree view. There, it is possible to see all data types defined in the structure.

= Counters: All CPU diagnostics counters return to zero when their limit value is exceeded.

= Direct representation variable: “n” represents the value configured at the CPU through MasterTool IEC XE as the
initial diagnostics address.

= AT Directive: At the description of symbolic variables that use the AT directive to map it in direct mapping variables,
the syntax to be used before the desired summarized diagnostic is DG_Module.tDetailed., where the word Module must
be replaced by the CPU being used. The AT directive is a reserved word of the programmer, and some symbolic variables
that use this directive indicate diagnostics.

. . o AT Variable ey
Direct representation | Size DG_Modulo.tDetailed.* Description
NX3003 = 0x3003
%QD(n+4) DWORD Target. NX3004 = 0x3004
dwCPUModel NX3005 = 0x3005
NX3010 = 0x3010
NX3020 = 0x3020
NX3030 = 0x3030
% QB(n+8) BYTE Target. Firmware version.
ARRAY(4)| abyCPUVersion
%QB(n+12) BYTE Target. Bootloader version.
ARRAY(4)| abyBootloaderVersion
% QB(n+16) BYTE Target.) Auxiliary processor version.
ARRAY(4)| abyAuxprocVersion

Table 220: Target Detailed Diagnostics Group Description

3 ; . AT Variable ..
Direct representation | Size DG._Module.tDetailed.* Description
Hardware. Failure in the communication between the aux-
%QX(n+20).0 BIT bAuxprocFailure iliary processor and the principal processor.

Hardware. The main processor is not enabled to communi-

%QX(n+20).1 BIT bRTCFailure cate with the RTC (CPU’s clock).
Hardware. Failure in the communication between the ther-

%QX(n+20)2 BIT bThermometerFailure ! mometer and the main processor.
%QX(n+20).3 BIT Hardware. Failure in the communication between the LCD

’) bLCDFailure screen and the main processor.

Table 221: Hardware Detailed Diagnostics Group Description

Direct representation | Size ﬁE_M odule.tDetail e({grlable Description
% QW (n+21) WORD Exception. Exception code generated by the RTS. See Ta-
wExceptionCode ble 223.
% QB(n+23) BYTE Exception. Level, in percentage (%), of charge in the pro-
byProcessorLoad Cessor.

Note:

Table 222: Exception Detailed Diagnostics Group Description

Exception Code: the code of the exception generated by the RT'S (Runtime System) can be consulted below:

354

altus

7. MAINTENANCE

Code | Description Code | Description
0x0000 | There is no exception code. 0x0051 | Access violation.

Watchdog time of the IEC task ex- . . .
0x0010 pired (Software Watchdog). 0x0052 | Privileged instruction.
0x0012 | I/O configuration error. 0x0053 | Page failure.
0x0013 Checksum error after the program 0x0054 | Stack overflow.

download.
0x0014 | Fieldbus error. 0x0055 | Invalid disposition.
0x0015 | I/O updating error. 0x0056 | Invalid maneuver.
0x0016 | Cycle time (execution) exceeded. 0x0057 | Protected page.
0x0017 | Program online updating too long. 0x0058 | Double failure.
0x0018 | External references not resolved. 0x0059 | Invalid OpCode.
0x0019 | Download rejected. 0x0100 | Data type misalignment.
ox0014 | Froject not loaded, as the retentive | g 4107 | Arrays limit exceeded.

variables cannot be reallocated.
0x001B | Project not loaded and deleted. 0x0102 | Division by zero.
0x001C | Out of memory stack. 0x0103 | Overflow.
0x001D Retentive memory is corrupted and 0x0104 | Cannot be continued.
cannot be mapped.

Project can be loaded but causes a Watchdog in the processor load of
0x001E drop later on. 0x0105 all IEC task detected.
0x0021 Target of startup application does 0x0150 | FPU: Not specified error.

not match to the current target.
0x0022 | Scheduled tasks error. 0x0151 | FPU: Operand is not normal.

0x0152 | FPU: Division by zero.
0x0023 E)(swnloaded file Checksum with er- 0x0153 | FPU: Inexact result.

Retentive identity is not correspon-
0x0024 | dent to the current identity of the | 0x0154 | FPU: Invalid operation.

boot project program
0x0025 | IEC task configuration failure. 0x0155 | FPU: Overflow.
0x0026 gfgpelica“"“ working with wrong | 156 | FPU: Stack verification.
0x0050 | Illegal instruction. 0x0157 | FPU: Underflow.

Table 223: RTS Exception codes

Direct representation | Size gl}i e_ Mo dul(I:t(I;) etaile d.*varl- Description
CPU Startup Status:
%QB(n+25) BYTE RetainInfo. 01: Hot start
byCPUlInitStatus 02: Warm Start
03: Cold Start
Note: These variables are reset in every
powerup.
%OW(n+26 WORD RetainInfo. Increments when the CPU starts with loss of re-
Al) wCPUColdStartCounter tentivity. (0 to 65535)
RetainInfo. Increments when the CPU starts normally with
%QW(n+28) WORD wCPUWarmStartCounter valid retain data. (0 to 65535)
RetainInfo. Disturbance counter less than CPU power fail-
% QW (n+30) WORD wCPUHotStartCounter ure support time. (0 to 65535).

355

altus

7. MAINTENANCE

q q q AT DG vari- -
Direct representation | Size able_Modulo.tDetailed.* Description
% 32 WORD RetainInfo. Counter of resets performed by RTS (Runtime
PQW(n+32) ° wRTSResetCounter System). (0 to 65535).

Table 224: RetainInfo Group Detailed Diagnostics

q q q AT Variable Ao
Direct representation | Size DG_Module.tDetailed.* Description
%QX(n+36).0 BIT Reset. The CPU was restarted due a failure in the
¢ : bBrownOutReset power supply in the last startup.
%QX(n+36).1 BIT Reset. The CPU was restarted due the active watchdog
: bWatchdogReset in the last startup.
Table 225: Reset Detailed Diagnostics Group Description
Note:

Brownout Reset: The brownout reset diagnostic is only true when the power supply exceed the minimum limit required
in its technical characteristics, remaining in low-voltage, i.e. without undergoing any interrupt. The CPU will identify the drop
in supply and will indicate the power failure diagnostic. When the voltage is reestablished, the CPU will automatically reset

and will indicate the brownout reset diagnostic.

Direct representation | Size ﬁl(;_Mo dule. tDetaile(Xgnable Description
%QX(n+37).0 BIT Thermometer. zoMarm generated due internal temperature at 85
bOverTemperatureAlarm ! C or above it.
%QX(n+37).1 BIT Thermometer. OAlarm generated due internal temperature at 0
bUnderTemperature Alarm ! C or under it.
%QD(n+38) DINT Thermometer. Temperature read in the internal sensor of the
diTemperature ' CPU.

Table 226: Thermometer Detailed Diagnostics Group Description

Note:

Temperature: In order to see the temperature directly in the memory address, a conversion must be made, since the data
size is DINT and monitoring is done in 4 bytes. Therefore, it’s recommended to use the associated symbolic variable, because

it already provides the final temperature value.

Direct representation | Size ﬁE_M odule.tDetail e(}f:rlable Description
) Protocol selected in the COM 1:
% QB(n+42) BYTE Seria. COMI. 00: Without protocol
byProtocol 01: MODBUS RTU Master
02: MODBUS RTU Slave
03: Other protocol
Serial. COMI. Counter of characters received from COM 1 (0
%QD(n+43) DWORD dwRXBytes 10 4294967295).
Seria. COMI1. Counter of characters transmitted from COM 1
%QD(n+47) DWORD 1 TXBytes (0 to 4294967295).
1 Serial. COMI. Number of characters left in the reading buffer
%QW(n+51) WORD WRXPerdingBytes in COM 1 (0 to 1024).
Serial. COMI. Number of characters left in the transmission
%QW(n+53) WORD WIXPendingBytes buffer in COM 1 (0 to 1024).
) The transmitter is holding the data line at zero
% QW (n+55) WORD Serial. COMI. for too long, according to the databit config-
wBreakErrorCounter ured.
%QW(n+57) WORD Serial. COM1. The received frame has the mismatched parity
wParityErrorCounter bit.

356

altus

7. MAINTENANCE

q o q AT Variable A
Direct representation | Size DG_Module.tDetailed.* Description
. The received frame has the wrong start point,
% QW (n+59) WORD Serial. COMI. usually caused by a noise or baud rate mis-
wFrameErrorCounter match.
. When the receive ring buffer is full and starts to
% QW (n+61) WORD Serial. COMI. lose the old frames (too many frames not treated
wRXOverrunCounter by the device).

Table 227: Serial COM 1 Detailed Diagnostics Group Description

Note:

Parity Error Counter: When the serial COM 1 is configured Without Parity, this error counter won’t be incremented
when it receives a message with a different parity. In this case, a frame error will be indicated.

]] q AT Variable q4q
Direct Variable | Size DG._Module.tDetailed.* Description
) Protocol selected in the COM 2:
%QB(n+67) BYTE Serial. COM2. 00: Without protocol
byProtocol 01: MODBUS RTU Master
02: MODBUS RTU Slave
03: Other protocol
i Counter of characters received from COM 2 (0
%QD(n+68) DWORD Serial. COM2.
Serial. COM?2. Counter of characters transmitted through COM
%QD(m+72) | DWORD 5 Bytes 2 (0 to 4294967295).
i Number of characters left in the reading buffer
%QW (n+76) WORD Serial. COM2. !
wRXPendingBytes in COM 2 (0 to 1024).
i Number of characters left in the transmission
% QW (n+78) WORD Serial. COM2. -
Q WTXPerdingBytes buffer in COM 2 (0 to 1024),
. The transmitter is holding the data line at zero
% QW (n+80) WORD Serial. COM2. for too long, according to the databit config-
wBreakErrorCounter ured.
%QW(n+82) WORD Serial. COM2. g_he received frame has the mismatched parity
wParityErrorCounter 1t
. The received frame has the wrong start point,
% QW (n+84) WORD Serial. COM2. usually caused by a noise or baud rate mis-
wFrameErrorCounter match.
. When the receive ring buffer is full and starts to
% QW (n+86) WORD Serial. COM2. lose the old frames (too many frames not treated
wRXOverrunCounter by the device).
Table 228: Serial COM 2 Detailed Diagnostics Group Description
Note:

Parity Error Counter: When the serial COM 2 is configured Without Parity, this error counter won’t be incremented
when it receives a message with a different parity. In this case, a frame error will be indicated.

. . . AT DG vari- ety
Direct representation | Size able_Modulo.tDetailed.* Description
%QX(n+92).0 BIT Ethernet.NET. Indicates link state on NET 1.
bLinkDown
%QW(n+93) WORD Ethernet.NET1. Protocol selected in NET 1:
wProtocol 00: No protocol
%QX(n+93).0 BIT Ethernet. NETI. MODBUS RTU client via TCP.
wProtocol.
bMODBUS_RTU_ETH_Client
%QX(n+93).1 BIT Ethernet. NET. MODBUS TCP Client.
wProtocol.
bMODBUS_ETH_Client

357

altus

7. MAINTENANCE

q q q AT DG vari- e
Direct representation | Size able_Modulo.tDetailed.* Description
%QX(n+93).2 BIT Ethernet.NETI. MODBUS RTU Server via TCP.
wProtocol.
bMODBUS_RTU_ETH_Server
%QX(n+93).3 BIT Ethernet. NETI. MODBUS TCP Server.
wProtocol.
bMODBUS_ETH_Server
%QB(n+95) STRING Ethernet. NET1. NET IP address 1.
(15) szIP
%QB(n+111) STRING Ethernet.NET1. NET 1 Subnet Mask.
(15) szMask
%QB(n+127) STRING Ethernet. NET1. NET 1 Gateway Address.
(15) szGateway
%QB(n+143) STRING Ethernet.NET1. MAC NET 1 Address.
17 szMAC
%QB(n+161) BYTE Ethernet.NETI. NET IP address 1.
ARRAY (4) abyIP
%QB(n+165) BYTE Ethernet. NETI. NET 1 Subnet Mask.
ARRAY (4) abyMask
% QB(n+169) BYTE Ethernet.NET1. NET 1 Gateway Address.
ARRAY(4) abyGateway
%QB(n+173) BYTE Ethernet.NETT. MAC NET 1 Address.
ARRAY(6) abyMAC
Ethernet.NET1. Counter of packets sent via NET 1 port (0 to
% QD179 PWORD dwPacketsSent 4294967295).
Ethernet.NET1. Counter of packets received through NET 1 port
7% QD(n+183) DWORD dwPacketsReceived (00 4294967295).
Ethernet.NET]1. Count of bytes sent over NET 1 port (0 to
% QD(n+187) DWORD dwBytesSent 4294967295).
Count of bytes received through NET 1 port (0
%QD(n+191) DWORD Ethernet.NETT1.
0 dwBytesReceived t0 4294967295).
Ethernet.NET]1. Counter of transmission errors via NET 1 port
% QW (n+195) WORD WTXErrors (0 to 65535).
%OW(n+197 WORD Ethernet.NET1. Error counter in transmit buffer through NET 1
QW17 wWTXFIFOErrors port (0 to 65535).
Ethernet.NET]1. Connection loss counter when transmitting
%QW(n+199) WORD WIXDropErors through the NET 1 port (0 to 65535).
Collision error counter when transmitting via
%QW(n+201) WORD Ethernet.NET1.
wTXCollisionErrors NET 1 port (0 to 65535).
Ethernet.NET1. Transmission error counter on NET 1 port trans-
%QW(n+203) WORD WTXCarciorBrrors mission (0 to 65535).
%QW (n+205) WORD Ethernet.NETI1. Counter of errors received via NET 1 port (0 to
wRXErrors 65535).
Ethernet. NET1. Error counter in the receive buffer via NET 1
e QWn+207) WORD wRXFIFOErrors port (0 to 65535).
Ethernet.NET]1. Connection loss counter when receiving via
% QW (n+209) WORD WRXDropErrors NET 1 port (0 to 65535).
%OW(n+211 WORD Ethernet.NETI1. Frame error counter on reception via NET 1
QWn+211) wRXFrameErrors port (0 to 65535).
Ethernet.NET]1. Counter of multicast packets through NET 1
%QWn+213) WORD " Malticast port (0 to 65535).
Table 229: NET1 Ethernet Group Detailed Diagnostics
q q q AT DG vari- v
Direct representation | Size able_Modulo.tDetailed.* Description
%QX(n+219).0 BIT Ethernet.NET2. Indicates link state in NET 2.
bLinkDown

358

altus

7. MAINTENANCE

q q q AT DG vari- e
Direct representation | Size able_Modulo.tDetailed.* Description
%QW (n+220) WORD Ethernet. NET2. Protocol selected in NET 2:
wProtocol 00: No protocol
%QX(n+220).0 BIT Eﬂ“;;‘;g:ij:im MODBUS RTU client via TCP.
bMODBUS_RTU_ETH_Client
%QX(n+220).1 BIT Fhemet NET2. MODBUS TCP Client.
bMODBUS_ETH_Client
%QX(n+220).2 BIT Bhernet NET2. MODBUS RTU Server via TCP.
bMODBUS_RTU_ETH_Server
%QX(n+220).3 BIT Eﬂ\’:gggjgn MODBUS TCP Server.
bMODBUS_ETH_Server
%QB(n+222) STRING Ethernet. NET2. NET 2 IP address.
(15) szIP
%QB(n+238) STRING Ethernet. NET2. NET 2 Subnet Mask.
(15) szMask
%QB(n+254) STRING Ethernet.NET?2. NET 2 Gateway Address.
(15) szGateway
%QB(n+270) STRING Ethernet.NET?2. MAC NET 2 address.
(17) szMAC
%QB(n+288) Alggﬂi@ Ethernst-gETl NET 2 IP address.
aby
%QB(n+292) BYTE Ethernet. NET?2. NET 2 Subnet Mask.
ARRAY(4) abyMask
%QB(n+296) Agg{g@) E?S;&iﬁ? NET 2 Gateway Address.
%QB(n+300) BYTE Ethernet.NET2. MAC NET 2 address.
ARRAY(6) abyMAC
Counter of packets sent via NET 2 port (0 to
%QD(n+306) DWORD Ethernet. NET2.
dwPacketsSent 4294967295).
Counter of packets received through NET 2 port
%QD(n+310) DWORD Ethernet.NET2.
dwPacketsReceived (0 to 4294967295).
Ethernet. NET2. Count of bytes sent over NET 2 port (0 to
% QD(n+314) DWORD dwBytesSent 4294967293).
Count of bytes received through NET 2 port (0
%QD(n+318) DWORD Ethernet.NET2.
Q dwBytesReceived to 4294967295).
Ethernet. NET2. Counter of transmission errors via NET 2 port
% QW (n+322) WORD S TXBrrors (0 to 65535).
Ethernet. NET2. Error counter in the transmission buffer through
%QW(n+324) WORD WTXFIFOEmrons the NET 2 port (0 to 65535),
Ethernet.NET2. Connection loss counter when transmitting
%QW(n+326) WORD WIXDropErrors through the NET 2 port (0 to 65535).
2 Ethernet. NET2. Collision error counter when transmitting via
QW n+328) WORD wTXCollisionErrors NET 2 port (0 to 65535).
Ethernet. NET2. Transmission error counter on NET 2 port trans-
%QW(n+330) WORD WTXCarrietErrons mission (0 to 65535).
%QW (n+332) WORD Ethernet. NET2. Counter of errors received via NET 2 port (0 to
wRXETrrors 65535).
Error counter in receive buffer via NET 2 port
%QW (n+334) WORD Ethernet. NET2.
Q wRXFIFOErrors (0 t0 65535).
Ethernet. NET2. Connection loss counter when receiving via
%QW(n+336) WORD WRXDropErrors NET 2 port (0 to 65535).
RD Ethernet. NET2. Frame error counter on reception via NET 2
%QW(n+338) wo wRXFrameErrors port (0 to 65535).
Ethernet.NET2. Counter of multicast packets through NET 2
%QW(n+340) WORD wMulticast port (0 to 65535).
Table 230: NET2 Ethernet Group Detailed Diagnostics

359

altus

7. MAINTENANCE

q q q AT DG vari- -
Direct representation | Size able_Modulo.tDetailed.* Description

%QB(n+346) BYTE UserFiles. Indicates if the memory used to write user files
byMounted is able to receive the data.

% QD(n+347) DWORD UserFiles. User file memory free space in Kbytes.
dwFreeSpacekB

% QD(n+351) DWORD UserFﬂ.eS' User file memory storage capacity in Kbytes.
dwTotalSizekB

Note:

User Partition: The user partition is a memory area reserved for data storage in the CPU. For example: files with PDF

Table 231: Detailed Diagnostics Group UserFiles

extension, files with DOC extension and other data.

q q q AT DG i- a4
Direct representation | Size able_Modulo.tDetailed.* vari Description

%QB(n+356) BYTE UserLogs. Status of the memory where user logs are in-
byMounted serted.

% QW (n+357) WORD IPSGTSLOgSi(B User log memory free space in Kbytes.
wFreeSpace

% QW (n+359) WORD 'II‘Jserlléc')gsl.(B User logs memory storage capacity in Kbytes.
wTotalSize

Table 232: Detailed Diagnostics Group UserLogs

Direct representation | Size ﬁa_M odule.tDetail exi"able Description

MemoryCard. Status of the Memory Card:

%QB(n+362) BYTE byMoznted 00: Memory card not mounted

01: Memory card inserted and mounted
Protection level of the Memory Card: Data
% QX(n+363).0 BIT oM Mer:iloré’g%rg- blod reading of the memory card by the authorized
emcardto nable CPU.

%QX(n+363).1 BIT MemoryCard. Data writing in the memory card by the autho-
bCPUtoMemcardEnabled rized CPU.

% QD(n+364) DWORD dM;mogy CariB Free space in the Memory Card in Kbytes.

wFreeSpace

%QD(n+368) DWORD MemoryCard. Storage capacity of the Memory Card in

dwTotalSizekB Kbytes.

Table 233: MemoryCard Detailed Diagnostics Group Description

360

altus

7. MAINTENANCE

AT Variable

Direct representation | Size DG_Module.tDetailed.* Description
Informs the abnormal situation in the bus which
% QB(n+372) BYTE WHSB. caused the application stop for each mode of hot
byHotSwapAndStartupStatus | swapping. See Table 235 for more information.
%QB(n+373) BYTE WHSB. Reserved.
byReserved_0
DWORD Identification of errors in I/O modules, individ-
% QD(n+374) WHSB. ually. For more information about this diagnos-
AI(Q;?Y adwRackIOErrorStatus tic, see the notes below.
Status of presence of declared I/O modules in
% QD(n+502)]ivl;]l(i)/[\{\]() WHSB. buses, individually. For more information about
32) adwModulePresenceStatus this diagnostic, see the notes below.
Counter of failures in the WHSB bus. This
% QB(n+630) BYTE WHSB. counter is restarted in the energization (0 to
byWHSBBusErrors 255).
Table 234: WHSB Detailed Diagnostics Group Description
Notes:

Bus modules error diagnostic: Each DWORD from this diagnostic array represents a rack, whose positions are repre-
sented by the bits of these DWORDS. So, Bit-0 of the DWORD-0 is equivalent to position zero of the rack with address zero.
Each one of these Bits is the result of an OR logic operation between the Incompatible Configuration (bConfigMismatch),
absent modules (bAbsentModules), swapped modules (bSwappedModules), module with fatal error (bModuleFatalError) di-
agnostics and the operational state of the module in a certain position.

Module presence status: Each DWORD from this diagnostic array represents a rack, whose positions are represented by
the bits of these DWORDS. So, Bit-0 from DWORD-0 is equivalent to position zero of the rack with address zero. So, if
a module is present, this bit will be true. It’s important to notice that this diagnostic is valid for all modules, except power
supplies, CPUs and non-declared modules, e.g. those that are not in the rack on the respective position (bit remains in false).

Situations in which the Application Stops: The codes for the possible situations in which the application stops can be
consulted below:

Code Enumerable Description
00 INITIALIZING This state is presented while other states are not ready.
Application in Stop Mode due to hardware watchdog re-
01 RESET_WATCHDOG set or runtime reset, when the option “Start User Appli-

cation After a Watchdog Reset” is unmarked.

Application in Stop Mode due to Absent Modules diag-

02 ABSENT_MODULES_HOT_SWAP_ nostic being set when the Hot Swap Mode is "Disabled"
DISABLED or "Disabled, for declared modules only".
Application in Stop Mode due to Configuration Mis-
03 CFG_MISMATCH_HOT_SWAP_ match diagnostic being set when the Hot Swap Mode is
DISABLED "Disabled" or "Disabled, for declared modules only".

Application in Stop Mode due to Absent Modules diag-

04 ABSENT _MODULES_HOT _SWAP_ nostic being set when the Hot Swap Mode is "Enabled,
STARTUP CONSISTENCY with startup consistency"” or "Enabled, with startup con-

sistency for declared modules only".

Application in Stop Mode due to Incompatible Config-
05 CFG_MISMATCH_HOT_SWAP_ uration diagnostic being set when the Hot Swap Mode
STARTUP CONSISTENCY is "Enabled, with startup consistency" or "Enabled, with
- startup consistency for declared modules only".

Application in Stop Mode and all consistencies executed

06 APPL_STOP_ALLOWED_TO_RUN successfully. The application can be set to Run Mode.

361 altus

7. MAINTENANCE

Code Enumerable Description

Application in Stop Mode and all consistencies executed
successfully, but the I/O modules are not able to start the
system. It is not possible to set the application to Run
Mode.

Application in Stop Mode and all consistencies executed

08 APPL_STOP_MODULES_GETTING_ | successfully. The I/O modules are being prepared to start

07 APPL_STOP_MODULES_NOT_READY|

READY TO RUN the system. It is not possible to set the application to Run
o Mode.
09 NORMAL_OPERATING_STATE Application in Run Mode.
10 MODULE_CONSISTENCY_OK Internal usage.
1 APPL,_STOP_DUE.TO_EXCEPTION él;;%l.ication in Stop Mode due to an exception in the
Application in Stop Mode due to Duplicated Slots diag-
12 DUPLICATED_SLOT_HOT_SWAP_ nostic being set when the Hot Swap Mode is "Disabled"
DISABLED or "Disabled, for declared modules only".

Application in Stop Mode due to Duplicated Slots diag-
13 DUPLICATED_SLOT_HOT_SWAP_ nostic being set when the Hot Swap Mode is "Enabled,
STARTUP CONSISTENCY with startup consistency"” or "Enabled, with startup con-

sistency for declared modules only".

Application in Stop Mode due to Duplicated Slots diag-
14 DUPLICATED_SLOT_HOT_SWAP_ nostic being set when the Hot Swap Mode is "Enabled,
ENABLED without startup consistency".

Application in Stop Mode due to Non Declared Modules
15 NON_DECLARED_MODULE_HOT_ diagnostic being set when the Hot Swap Mode is "En-
SWAP_STARTUP_CONSISTENCY abled, with startup consistency".

Application in Stop Mode due to Non Declared Modules
16 NON_DECLARED_MODULE_HOT_ diagnostic being set when the Hot Swap Mode is "Dis-
SWAP_DISABLED abled".

Table 235: Codes of the Situations in which the Application Stops

q q q AT Variable Ao
Direct representation | Size DG_Module.tDetailed.* Description
Application. Informs the operation state of the CPU:
%QB(n+631) BYTE b)?gPUState 01: All user applications are in Run Mode
03: All user applications is in Stop Mode

% QX(n+632).0 BIT Application. There is one or more forced I/O points.

bForcedIOs
L. The NX30x0 CPU does not support IP ex-

% QX(n+632).1 BIT Application. change via the System Web Page. Therefore,

bNetDefinedBy Web the diagnosis will always remain FALSE.

Table 236: Application Detailed Diagnostics Group Description

. . q AT DG vari- A
Direct representation | Size able_Modulo.tDetailed.* Description
%QX(n+633).0 BIT SNTP. SNTP service enabled.
bServiceEnabled
SNTP. Indicates which server is active:
% QB(n+634) BYTE il 00: No active server.
byActiveTimeServer g .
01: Primary server active.
02: Secondary server active.

362 altus

7. MAINTENANCE

q q q AT DG vari- -
Direct representation | Size able_Modulo.tDetailed.* Description
Count of times the primary server was unavail-
% QW (n+635) WORD SNTP.
Q wPrimaryServerDownCount | able (0 t0 65535).
Count of times the secondary server was un-
%QW (n+637) WORD SNTP. :
wSecondaryServerDownCount | aVailable (0 to 65535).
Count of times the RTC was updated by the
% QD(n+639) DWORD SNTP. :
Q dwRTCTimeUpdatedCount | SNTP service (0 to 4294967295).
Indicates status of last update:
% QBn+643) BYTE byLastU Sdljgal;uccessful 00: Not updated.
y P ’ 01: Last update failed.
02: Last update was successful.
SNTP Indicates which server was used in the last up-
% QB(n+644) BYTE . date:
byLastUpdateTimeServer 00: No updates.
01: Primary server.
02: Secondary server.
%QB(n+645) BYTE SNT]? S]ISaSgJ f%'llategime- Day of last RTC update.
yDay ont
% QB(n+646) BYTE SNTP-sta;t/[Upd;teTim& Month of last RTC update.
yMont!
%QW (n+647) WORD SNTP. SLasy pdateTime. Year of last update of RTC.
wYear
%QB(n+649) BYTE SNTP-SLbaSI:IUPdateTim& Time of last RTC update.
yHours
%QB(n+650) BYTE SNTP. sbLal\S/}UpdateTim& Minute of last RTC update.
yMinutes
% QB(n+651) BYTE SNT;.zsLastUgdAz?eTime. Reserved for alignment.
eservedAlign
%QB(n+652) BYTE SNTP~Sg~asstUpd§teTime- According to last RTC update.
ySeconds
%QW (n+653) WORD SNTP. ﬁ?lleUpdathime- Millisecond of last RTC update.
wMilliseconds
Table 237: SNTP Group Detailed Diagnostics
q . q AT DG vari- e
Direct representation | Size able_Modulo.tDetailed.* Description
% QX(n+659).0 BIT e SOE[I]S Client Connection Status 01
onnectionStatus
SOE[1]. Client event queue status 01:
%QX(n+659).1 BIT bOverflowStatus FALSE - No overflow
TRUE - Queue limit exceeded
%QB(n+660) BYTE SOE[1]. Reserved
byReserved_0
% QW (n+661) WORD B SOE([:H- Customer Queue Event Counter 01
wEventsCounter
o n+663). : ient Connection Status
%QX(n+663).0 BIT " SOE[ZJS Client C ion Status 02
onnectionStatus
SOE[2]. Client event queue status 02:
% QX(n+663).1 BIT bOverflowStatus FALSE - No overflow
TRUE - Queue limit exceeded
% QB(n+664) BYTE SOE[2]. Reserved.
byReserved_0
% QW (n+665) WORD E SOEC[IZ]‘ Client queue event counter 02.
wEventsCounter

Notes:

Table 238: SOE Group Detailed Diagnostics

Synchronization of SOE group diagnostics in a system operating with Half-Cluster redundancy: When a project is
configured with Half-Cluster redundancy, the SOE group diagnostics are not synchronized between the two Half-Clusters.

363 altus

7. MAINTENANCE

Updating SOE group diagnostics on transition to active state: When a Half-Cluster goes from Standby state to Active
state, SOE group diagnostics are updated from the third cycle on.

" q q AT DG vari- A
Direct representation | Size able_Modulo.tDetailed.* Description
Each bit represents an identification number of
%QD(n+667) DWORD Rack. arack, if any bit is TRUE, it means that the rack,
dwAbsentRacks with that identification number, is absent.
Each bit represents an identification number of
Rack. a rack, if any bit is TRUE, it means that more
%QD(n+671) DWORD dwDuplicatedRacks than one rack is configured with the same iden-
tification number.
Each bit represents a rack identification number,
Rack. if any bit is TRUE, it means that there is a rack
% QD(n+675) DWORD dwNonDeclaredRacks configured with an identification number that is
not declared in the project.
Table 239: Rack Group Detailed Diagnostics
q q q AT DG vari- Qe
Direct representation | Size able_Modulo.tDetailed.* Description
L 32-bit CRC of the application. When the appli-
%QD(n+681) DWORD ApplicationInfo. cation is modified and sent to the CPU, a new
dwApplicationCRC CRC is calculated.

Table 240: ApplicationInfo Group Detailed Diagnostics

7.1.5. Diagnostics via Function Blocks

The function blocks allow the visualization of some parameters which cannot be accessed otherwise. The function regard-
ing advanced diagnostics is in the NextoStandard library and is described below.

7.1.5.1. GetTaskInfo

This function returns the task information of a specific application.

GetTaskInfo
—psApphlame GetTaskInfo —
—psTaskiame

—pstTaskInfo

Figure 190: GetTaskInfo Function

Below, the parameters that must be sent to the function for it to return the application information are described.

Input parameter Type Description
psAppName POINTER TO STRING | Application name.
psTaskName POINTER TO STRING | Task name.
pstTaskInfo ElOf(I)NTER TO stTask- Eg;nter to receive the application informa-

Table 241: GetTaskInfo Input Parameters

The data returned by the function, through the pointer informed in the input parameters are described on table below.

364 altus

7. MAINTENANCE

Returned Parameters Size Description
dwCurScanTime DWORD Tasl? cycle time (execution) with 1 us res-
olution.
dwMinScanTime DWORD Task cycle minimum time with 1 s reso-
lution.
dwMaxScanTime DWORD Task cycle maximum time 1 s resolution.

Task cycle average time with 1 us resolu-

dwAvgScanTime DWORD .
tion.

Task cycle maximum time before watch-
dog occurrence.

dwIECCycleCount | DWORD IEC cycle counter.

dwLimitMaxScan DWORD

Table 242: GetTaskInfo Output Parameters

Possible ERRORCODE:

= NoError: success execution;
= TaskNotPresent: the desired task does not exist.

Example of utilization in ST language:

PROGRAM UserPrg

VAR

sAppName : STRING;

psAppName : POINTER TO STRING;
sTaskName : STRING;

psTaskName : POINTER TO STRING;
pstTaskInfo : POINTER TO stTaskInfo;
TaskInfo : stTaskInfo;

Info : ERRORCODE;

END_VAR

//INPUTS:

sAppName := 'Application'; //Variable receives the application name.
psAppName := ADR (sAppName); //Pointer with application name.

sTaskName := 'MainTask'; //Variable receives task name.

psTaskName := ADR(sTaskName); //Pointer with task name.

pstTaskInfo := ADR(TaskInfo); //Pointer that receives task info.
//FUNCTION:

//Function call.

Info := GetTaskInfo (psAppName, psTaskName, pstTaskInfo);

//Variable Info receives possible function errors.

7.2. Graphic Display

The graphic display available in this product has an important tool for the process control, as through it is possible to
recognize possible error conditions, active components or diagnostics presence. Besides, all diagnostics including the I/O
modules are presented to the user through the graphic display. For further information regarding the diagnostic key utilization
and its visualization see One Touch Diag section.

On figure below, it is possible to observe the available characters in this product graphic display and, next, its respective
meanings.

365

7. MAINTENANCE

O 0 & @

RUN (JS1+ S2%
ACTs F DGO

©®@® 6 ®

Figure 191: CPU Status Screen

11052006C

Legend:

1. Indication of the CPU status operation. In case the CPU application is running, the state is RUN. In case the CPU
application is stopped, the state is STOP and, when is stopped in an application depuration mark, the state is BRKP. For
further details, see CPU Operating States section.

2. Memory Card presence indication. Further details regarding its installation see Memory Card Installation section.

3. COM 1 traffic indication. The up arrow (A) indicates data transmission and the down arrow (V) indicates data
reception. For further information regarding the COM 1 interface see Serial Interfaces section.

4. COM 2 traffic indication. The up arrow (A) indicates data transmission and the down arrow (V) indicates data
reception. For further information regarding the COM 2 interface see Serial Interfaces section.

5. Indication of the CPU active diagnostics quantity. In case the number shown is different than O (zero), there are active
diagnostics in the CPU. For further details regarding their visualization on the CPU graphic display, through diagnostic
key, see One Touch Diag section.

6. Forced variables in the CPU indication. In case the “F” character is shown in the graphic display, a variable is being
forced by the user, whether symbolic, direct representation or AT. For further information regarding variable forcing see
Writing and Forcing Variables section.

7. Identification of the CPU redundancy state (message only valid in NX3030 in redundant mode). If the CPU is the
active PLC, the ACT information will be presented. The other possible states are NCF (Not-configured), STR (Starting),
INA (Inactive) and SBY (Stand-by).

8. Indication that the project synchronization is being executed. The up arrow (A) indicates project data transmission
and the down arrow (V) indicates project data reception. For further information about the project synchronization see
Project Synchronization section.

Besides the characters described above, Nexto CPUs can present some messages on the graphic display, correspondent to
a process which is being executed at the moment.

The table below present the messages and their respective descriptions:

Message Description

FORMATTING... Indicates the CPU is formatting the memory card.

FORMATTING ERROR Indicates that an error occurred while formatting the memory
card by the CPU.

WRONG FORMAT Indicates that the memory card format is incorrect.

INCORRECT PASSWORD Indicates the typed password is different from the configured
password.

TRANSFERRING... Indicates the project is being transferred.
Indicates there is been an error in the project transference caused

TRANSFERRING ERROR by some problem in the memory card or its removal during trans-
ference.

TRANSFERRING COMPLETE Indicates the transference has been executed successfully.

TRANSEERRING TIMEOUT Ir}d1cates z} time-out l'1as been occurred (communication time ex-
pired) during the project transference.

CPU TYPE MISMATCH Ind1cat<?s the CPU model is different from the one configured in
the project within the memory card.

VERSION MISMATCH Fndwates Fhe CI.’U' version is different from the one configured
in the project within the memory card.

366

7. MAINTENANCE

Message Description

APPLICATION CORRUPTED Indicates the application within the memory card is corrupted.

APPLICATION NOT FOUND Indicates there is no application in the memory card to be trans-
ferred to the CPU.

CRC NOT FOUND Indicates that the CRC application does not exist.

MCF FILE NOT FOUND Indicates there is no MCEF file in the memory card.

NO TAG There is no configured tag for the CPU in the MasterTool IEC
XE.

NO DESC There is no configured description for the CPU in the MasterTool
IEC XE.

MSG. ERROR Indicates that there are error(s) on diagnostics message(s) of the
requested module(s).

SIGNATURE MISSING Indicates the product presented an unexpected problem. Get in

contact with Altus Technical Support sector.

Indicates that occurred an error in the application and the Run-

APP. ERROR RESTARTING . . L
time is restarting the application.

APP. NOT LOADED Indicates that the runtime will not load the application.

LOADING APP. Indicates that the runtime will load the application.

WRONG SLOT Indicates that the CPU is in an incorrect position in the rack.
Indicates that there are serious problems in the CPU startup such

FATAL ERROR as CPU partitions that were not properly mounted. Please, con-

tact Altus customer support.

Indicates that the CPU hardware and software are not compatible

HW-SW MISMATCH because the product presented an unexpected problem. Please,
contact Altus customer support.

UPDATING FIRMWARE Indicates the firmware is being updated in the CPU.

RECEIVING FIRMWARE Indicates the updating file is being transferred to the CPU.

UPDATED Shows the firmware version updated in the CPU.

UPDATE ERROR Indicates an error has occurred during the CPU firmware updat-

ing, caused by communication failure or configuration problems.

Indicates the CPU is being restarted for the updating to have

REBOOTING SYSTEM...
effect.

Table 243: Other Messages of the Graphic Display

7.3. System Log

The System Log is an available feature in the MasterTool IEC XE programmer. It is an important tool for process control,
as it makes it possible to find events on CPU that may indicate error conditions, presence of active components or active
diagnostics. Such events can be viewed in chronological order with a resolution of milliseconds, with a storage capacity of up
to one thousand log entries stored in the CPU internal memory, that can’t be removed.

In order to access these Logs, just go to the Device Tree and double-click on Device, then go to the Log tab, where hundreds
of operations can be seen, such as: task max cycles, user access, online change, application download and upload, application
synchronization between CPUs, firmware update between another events and actions.

In order to view the Logs, just need to be connected to a CPU (selected Active Path) and click on [#] . When this button is
pressed the Logs are displayed and updated instantly. When the button is not being pressed the Logs will be hold in the screen,
it means, these button has two stages, one hold the logs state being updated and in the state the updating is disabled. To no

longer show the Logs, press [X] .
It is possible to filter the Logs in 4 different types: warning(s), error(s), exception(s) and information.
Another way to filter the messages displayed to the user is to select the component desired to view.

The Log tab’s Time Stamp is shown by MasterTool after information provided by the device (CPU). MasterTool can display
the Time Stamp in local time (computer’s time) or UTC, if UTC time checkbox is marked.

367 altus

7. MAINTENANCE

If the device’s time or time zone parameter are incorrect, the Time Stamp shown in Master-
Tool also won’t be correct.

For further information about the System Logs please check the MasterTool IEC XE User Manual — MU299609 and the
RTC Clock and Time Synchronization subsection of this manual.

The system logs of the CPUs, starting in firmware version 1.4.0.33 (Nexto) and 1.14.36.0
(Xtorm), are reloaded in the cases of a restart of the CPU or a reboot of the Runtime System,
that is, it will be possible to check the older logs when one of these situations occurs.

7.4. Not Loading the Application at Startup

If necessary, the user can choose to not load an existing application on the CPU during its startup. Just power the CPU
with the diagnostics button pressed and keep it pressed for until the message “APP. NOT LOADED” is shown in the screen. If
a login attempt is made, MasterTool IEC XE software will indicate that there is no application on the CPU. For reloading the
application, the CPU must be reset or a new application download must be done.

7.5. Power Supply Failure

The Nexto Series Power Supply (NX8000) has a failure detection system according to the levels defined in its technical
features (see Power Supply 30 W 24 Vdc Technical Characteristics - CE114200). There are two ways to diagnose a failure:

1. In case the NX8000 power supply is on with voltage lower than the required minimum limit, a power supply failure
diagnostic is generated, which is recognized by the CPU and the message “POWER FAILURE” is shown on the display.
When the supply is within the established limits, the CPU recognizes it and automatically is restarted with the user
application. The diagnostic will still be active to show to the user that the last initialization suffered a power supply
failure.

2. In case the NX8000 has a voltage drop to an inferior value than the minimum required limit and it returns to a higher
value within 10 ms, the power supply failure is not recognized by the CPU and the diagnostic is not generated as the
system remains intact during this time. But if the voltage drop takes longer than 10 ms, the “POWER FAILURE”
message is shown on the CPU screen and the diagnostic is activated.

POWER
FAILURE

Figure 192: Power Supply Failure Message

The user can change the value of the variable attributed to the power supply failure to FALSE during the application
execution, facilitating the verification and treatment of this diagnostic.

The POWER FAILURE diagnostic is already mapped in a specific memory region, defined as CPU Detailed Diagnostic.
This way it is just to use it as global variable. The variable name is described in the detailed diagnostic list in the Diagnostics
via Variables section.

7.6. Common Problems
If, at power on the CPU, it does not work, the following items must be verified:

= [s the room temperature within the device supported range?
= [s the rack power supply being fed with the correct voltage?

= [s the power supply module inserted on the far left in the rack (observing the rack by the front view) followed by the
Nexto Series CPU?

= Are there network devices, as hubs, switches or routers, powered, interconnected, configured and working properly?

368 altus

——

7. MAINTENANCE

Is the Ethernet network cable properly connected to the Nexto CPU NET 1 or NET 2 port and to the network device?
Is the Nexto Series CPU on, in execution mode (Run) and with no diagnostics related to hardware?

If the Nexto CPU indicates the execution mode (Run) but it does not respond to the requested communications, whether
through MasterTool IEC XE or protocols, the following items must be verified:

Is the CPU Ethernet parameters configuration correct?
Is the respective communication protocol correctly configured in the CPU?
Are the variables which enable the MODBUS relations properly enabled?

If no problem has been identified, consult the Altus Technical Support.

7.7.

Troubleshooting

The table below shows the symptoms of some problems with their possible causes and solutions. If the problem persists,
consult the Altus Technical Support.

7.8.

Symptom Possible Cause Solution

Verify if the CPU is connected properly in the rack.

Lack of -
ack ob power sup Power off and take off all modules from the bus, but the

Does not power on ﬁl};v er(;rd incorrectly power supply and the CPU,
' Power on the bus and verify the power supply function-
ing, the external and the one in the rack.
Verify if the supply voltage gets to the Nexto power sup-
ply contacts and if is correctly polarized.
CPU Screen CPU in a wrong posi- The CPU must be placed in slots 2 and 3 of rack 0. Put if]
shows the =~ mes- | . in the correct slots.
sage WRONG SLOT '

CPUs must be placed in slots 2 and 3 of rack 0. Put it in|
the correct slots.

Does not communi- | Bad contact or bad Verify every communication cable connection.

cate configuration. Verify the serial and Ethernet interfaces configuration in|
the MasterTool IEC XE software.

Verify if the memory card is properly connected in the
Does not recognize | Bad connection or compartment.

the memory card not mounted. Verify if the memory card was put in the right side, as
indicated on the CPU frontal panel.

Verify if the memory card wasn’t unmounted through MS
button, placed on the frontal panel, visualizing the indi-
cation on the CPU graphic display.

Table 244: Troubleshooting

Preventive Maintenance

It must be verified, each year, if the interconnection cables are connected firmly, without dust accumulation, mainly the
protection devices.

In environments subjected to excessive contamination, the equipment must be periodically cleaned from dust, debris,
etc.

The TVS diodes used for transient protection caused by atmospheric discharges must be periodically inspected, as they
might be damaged or destroyed in case the absorbed energy is above limit. In many cases, the failure may not be visual.
In critical applications, is recommendable the periodic replacement of the TVS diodes, even if they do not show visual
signals of failure.

Bus tightness and cleanness every six months.

For further information, see Nexto Series Manual - MU214600.

8. ANNEX. DNP3 INTEROPERABILITY

Annex. DNP3 Interoperability

DNP3 Device Profile

DNP3
DEVICE PROFILE DOCUMENT

Device Identification

Vendor Name Altus S/A
Device Name NX3030
Device Function Slave

DNP Levels Supported for

Requests: None
Responses: None

Connections Supported IP Networking

Methods to set Configurable Parameters Software: MasterTool IEC XE
IP Networking

Type of End Point: TCP Listening (Outstation Only)

Accepts TCP Connections from Allows all

IP Address(es) from which TCP Connec- |

tions are accepted:

TCP Listen Port Number

Configurable, range 1 to 65535

TCP Keep-alive timer

Configurable, range 0 to 4294967295

Multiple master connections

Supports up to two masters

Based on TCP port number
Time synchronization support SNTP
Link Layer
Data Link Address Configurable, range 0 to 65519
Self Address Support using address No
0xFFFC
Requires Data Link Layer Confirmation Never
Max1mum number of octets Transmitted in Fixed at 292
a Data Link Frame
Maximum number of octets that can be Re- .
ceived in a Data Link Frame Fixed at 292
Application Layer
Max1mu.m qumber of octets Transmitted in Fixed at 2048
an Application Layer Fragment
Maximum number of octets that can be re- Fixed at 2048

ceived in an Application Layer Fragment

Time-out waiting for Application Confirm
of solicited response message

Fixed at 10000 ms

Device Trouble Bit IIN1.6

This bit will be set if PLC is not in RUN mode

Event Buffer Overflow Behavior

Discard the oldest event

Sends Multi-Fragment Responses

Yes

Outstation Unsolicited Response Support

Supports Unsolicited Reporting

|No

Table 245: DNP3 Device Profile

370

altus

8. ANNEX. DNP3 INTEROPERABILITY

8.2. DNP V3.0 Implementation Table

REQUEST RESPONSE
DNP OBJECT GROUP & VARIATION Master may issue Master must parse
Outstation must parse Outstation may issue
Group | Var .. Function Qualifier Codes Function Qualifier
Num Num Description Codes (hex) Codes Codes (hex)
(dec) (dec)
1 0 Binary Input — 1 (read) 00, 01 (start-stop)
Any Variation 06 (no range, or all)
1 1 Binary Input — 1 (read) 00, 01 (start-stop) 129 00, 01
Packed format 06 (no range, or all) (response) (start-stop)
2 0 Binary Input Event —| (read) 06 (no range, or all)
Any Variation 07, 08 (limited qty)
2 2 Binary Input Event —| (read) 06 (no range, or all) 129 17,28
With absolute time 07, 08 (limited qty) (response) (index)
60 1 Class Objects — 1 (read) 06 (no range, or all)
Class 0 data
60 2 Class Objects — 1 (read) 06 (no range, or all)
Class 1 data 07, 08 (limited qty)
80 1 Internal Indications - 1 (read) 00, 01 (start-stop) 129 00
Packed format (response) (start-stop)
2 (write) 00 (start-stop)
index=7

Table 246: DNP V3.0 Implementation Table

371

	1 Introduction
	1.1 Nexto Series
	1.2 Innovative Features
	1.3 Documents Related to this Manual
	1.4 Visual Inspection
	1.5 Technical Support
	1.6 Warning Messages Used in this Manual

	2 Technical Description
	2.1 Panels and Connections
	2.2 General Features
	2.2.1 Common General Features
	2.2.2 Standards and Certifications
	2.2.3 Memory
	2.2.4 Protocols
	2.2.5 Serial Interfaces
	2.2.5.1 COM 1
	2.2.5.2 COM 2

	2.2.6 Ethernet Interfaces
	2.2.6.1 NET 1
	2.2.6.2 NET 2

	2.2.7 Memory Card Interface
	2.2.8 Environmental Characteristics

	2.3 Compatibility with Other Products
	2.4 Performance
	2.4.1 MainTask Interval Time
	2.4.2 Application Times
	2.4.3 Time for Instructions Execution
	2.4.4 Initialization Times

	2.5 Physical Dimensions
	2.6 Purchase Data
	2.6.1 Included Itens
	2.6.2 Product code

	2.7 Related Products

	3 Installation
	3.1 Mechanical Installation
	3.2 Electrical Installation
	3.3 Ethernet Network Connection
	3.3.1 IP Address
	3.3.2 Gratuitous ARP
	3.3.3 Network Cable Installation

	3.4 Serial Network Connection RS-232
	3.4.1 RS-232C Communication

	3.5 Serial Network Connection RS-485/422
	3.5.1 RS-485 Communication without termination
	3.5.2 RS-485 Communication with Internal Termination
	3.5.3 RS-485 Communication with External Termination
	3.5.4 Example of Connection of a RS-485 Network with External Termination and Master Redundancy
	3.5.5 RS-422 Communication without Termination
	3.5.6 RS-422 Communication with Internal Termination
	3.5.7 RS-422 Communication with External Termination
	3.5.8 RS-422 Network Example

	3.6 Memory Card Installation
	3.7 Architecture Installation
	3.7.1 Module Installation on the Main Backplane Rack

	3.8 Programmer Installation

	4 Initial Programming
	4.1 Memory Organization and Access
	4.2 Project Profiles
	4.2.1 Single
	4.2.2 Basic
	4.2.3 Normal
	4.2.4 Expert
	4.2.5 Custom
	4.2.6 Machine Profile
	4.2.7 General Table
	4.2.8 Maximum Number of Tasks

	4.3 CPU Configuration
	4.4 Libraries
	4.5 Inserting a Protocol Instance
	4.5.1 MODBUS Ethernet

	4.6 Finding the Device
	4.7 Login
	4.8 Run Mode
	4.9 Stop Mode
	4.10 Writing and Forcing Variables
	4.11 Logout
	4.12 Project Upload
	4.13 CPU Operating States
	4.13.1 Run
	4.13.2 Stop
	4.13.3 Breakpoint
	4.13.4 Exception
	4.13.5 Reset Warm
	4.13.6 Reset Cold
	4.13.7 Reset Origen
	4.13.8 Reset Process Command (IEC 60870-5-104)

	4.14 Programs (POUs) and Global Variable Lists (GVLs)
	4.14.1 MainPrg Program
	4.14.2 StartPrg Program
	4.14.3 UserPrg Program
	4.14.4 GVL System_Diagnostics
	4.14.5 GVL Disables
	4.14.6 GVL IOQualities
	4.14.7 GVL Module_Diagnostics
	4.14.8 GVL Qualities
	4.14.9 GVL ReqDiagnostics
	4.14.10 Prepare_Start Function
	4.14.11 Prepare_Stop Function
	4.14.12 Start_Done Function
	4.14.13 Stop_Done Function

	5 Configuration
	5.1 Device
	5.1.1 User Management and Access Rights
	5.1.2 PLC Settings

	5.2 CPU Configuration
	5.2.1 General Parameters
	5.2.1.1 Hot Swap
	5.2.1.1.1 Hot Swap Disabled, for Declared Modules Only
	5.2.1.1.2 Hot Swap Disabled
	5.2.1.1.3 Hot Swap Disabled, without Startup Consistency
	5.2.1.1.4 Hot Swap Enabled, with Startup Consistency for Declared Modules Only
	5.2.1.1.5 Hot Swap Enabled with Startup Consistency
	5.2.1.1.6 Hot Swap Enabled without Startup Consistency
	5.2.1.1.7 How to do the Hot Swap

	5.2.1.2 Retain and Persistent Memory Areas
	5.2.1.3 Project Parameters

	5.2.2 External Event Configuration
	5.2.3 SOE Configuration
	5.2.4 Time Synchronization
	5.2.4.1 IEC 60870-5-104
	5.2.4.2 SNTP
	5.2.4.3 Daylight Saving Time (DST)

	5.2.5 Internal Points
	5.2.5.1 Quality Conversions
	5.2.5.1.1 Internal Quality
	5.2.5.1.2 IEC 60870-5-104 Conversion
	5.2.5.1.3 MODBUS Internal Quality
	5.2.5.1.4 Local Bus I/O Modules Quality
	5.2.5.1.5 PROFIBUS I/O Modules Quality
	5.2.5.1.6 PROFIBUS Digital Inputs Quality
	5.2.5.1.7 PROFIBUS Digital Output Quality
	5.2.5.1.8 PROFIBUS Analog Inputs Quality
	5.2.5.1.9 PROFIBUS Analog Output Quality

	5.3 Serial Interfaces Configuration
	5.3.1 COM 1
	5.3.1.1 Advanced Configurations

	5.3.2 COM 2
	5.3.2.1 Advanced Configurations

	5.4 Ethernet Interfaces Configuration
	5.4.1 Internal Ethernet Interfaces
	5.4.1.1 NET 1
	5.4.1.2 NET 2

	5.4.2 NX5000 Remote Ethernet Interfaces
	5.4.2.1 NET 1
	5.4.2.2 Operation Mode of the NX5000 Remote Ethernet Interface
	5.4.2.2.1 Redundant Mode

	5.4.3 Reserved TCP/UDP Ports

	5.5 Protocols Configuration
	5.5.1 Protocol Behavior x CPU State
	5.5.2 Double Points
	5.5.3 CPU’s Events Queue
	5.5.3.1 Consumers
	5.5.3.2 Queue Functioning Principles
	5.5.3.2.1 Overflow Sign

	5.5.3.3 Producers

	5.5.4 Interception of Commands Coming from the Control Center
	5.5.5 MODBUS RTU Master
	5.5.5.1 MODBUS Master Protocol Configuration by Symbolic Mapping
	5.5.5.1.1 MODBUS Master Protocol General Parameters – Symbolic Mapping Configuration
	5.5.5.1.2 Devices Configuration – Symbolic Mapping configuration
	5.5.5.1.3 Mappings Configuration – Symbolic Mapping Settings
	5.5.5.1.4 Requests Configuration – Symbolic Mapping Settings

	5.5.5.2 MODBUS Master Protocol Configuration for Direct Representation (%Q)
	5.5.5.2.1 General Parameters of MODBUS Master Protocol - setting by Direct Representation (%Q)
	5.5.5.2.2 Devices Configuration – Configuration for Direct Representation (%Q)
	5.5.5.2.3 Mappings Configuration – Configuration for Direct Representation (%Q)

	5.5.6 MODBUS RTU Slave
	5.5.6.1 MODBUS Slave Protocol Configuration via Symbolic Mapping
	5.5.6.1.1 MODBUS Slave Protocol General Parameters – Configuration via Symbolic Mapping
	5.5.6.1.2 Configuration of the Relations – Symbolic Mapping Setting

	5.5.6.2 MODBUS Slave Protocol Configuration via Direct Representation (%Q)
	5.5.6.2.1 General Parameters of MODBUS Slave Protocol – Configuration via Direct Representation (%Q)
	5.5.6.2.2 Mappings Configuration – Configuration via Direct Representation (%Q)

	5.5.7 MODBUS Ethernet
	5.5.8 MODBUS Ethernet Client
	5.5.8.1 MODBUS Ethernet Client Configuration via Symbolic Mapping
	5.5.8.1.1 MODBUS Client Protocol General Parameters – Configuration via Symbolic Mapping
	5.5.8.1.2 Device Configuration – Configuration via Symbolic Mapping
	5.5.8.1.3 Mappings Configuration – Configuration via Symbolic Mapping
	5.5.8.1.4 Requests Configuration – Configuration via Symbolic Mapping

	5.5.8.2 MODBUS Ethernet Client configuration via Direct Representation (%Q)
	5.5.8.2.1 General parameters of MODBUS Protocol Client - configuration for Direct Representation (%Q)
	5.5.8.2.2 Device Configuration – Configuration via Direct Representation (%Q)
	5.5.8.2.3 Mapping Configuration – Configuration via Direct Representation (%Q)

	5.5.8.3 MODBUS Client Relation Start in Acyclic Form

	5.5.9 MODBUS Ethernet Server
	5.5.9.1 MODBUS Server Ethernet Protocol Configuration for Symbolic Mapping
	5.5.9.1.1 MODBUS Server Protocol General Parameters – Configuration via Symbolic Mapping
	5.5.9.1.2 MODBUS Server Diagnostics – Configuration via Symbolic Mapping
	5.5.9.1.3 Mapping Configuration – Configuration via Symbolic Mapping

	5.5.9.2 MODBUS Server Ethernet Protocol Configuration via Direct Representation (%Q)
	5.5.9.2.1 General Parameters of MODBUS Server Protocol – Configuration via Direct Representation (%Q)
	5.5.9.2.2 Mapping Configuration – Configuration via Direct Representation (%Q)

	5.5.10 OPC DA Server
	5.5.10.1 Creating a Project for OPC DA Communication
	5.5.10.2 Configuring a PLC on the OPC DA Server
	5.5.10.2.1 Importing a Project Configuration

	5.5.10.3 Configuration with the PLC on the OPC DA Server with Connection Redundancy
	5.5.10.4 OPC DA Communication Status and Quality Variables
	5.5.10.5 Limits of Communication with OPC DA Server
	5.5.10.6 Accessing Data Through an OPC DA Client

	5.5.11 OPC UA Server
	5.5.11.1 Creating a Project for OPC UA Communication
	5.5.11.2 Types of Supported Variables
	5.5.11.3 Limit Connected Clients on the OPC UA Server
	5.5.11.4 Limit of Communication Variables on the OPC UA Server
	5.5.11.5 Encryption Settings
	5.5.11.6 Main Communication Parameters Adjusted in an OPC UA Client
	5.5.11.6.1 Endpoint URL
	5.5.11.6.2 Publishing Interval (ms) e Sampling Interval (ms)
	5.5.11.6.3 Lifetime Count e Keep-Alive Count
	5.5.11.6.4 Queue Size e Discard Oldest
	5.5.11.6.5 Filter Type e Deadband Type
	5.5.11.6.6 PublishingEnabled, MaxNotificationsPerPublish e Priority

	5.5.11.7 Accessing Data Through an OPC UA Client

	5.5.12 EtherCAT Master
	5.5.12.1 Installing and inserting EtherCAT Devices
	5.5.12.1.1 EtherCAT - Scan For Devices

	5.5.12.2 EtherCAT Master Settings
	5.5.12.2.1 EtherCAT Master Parameters
	5.5.12.2.2 EtherCAT Master - Sync Unit Assignment
	5.5.12.2.3 EtherCAT Master - Overview
	5.5.12.2.4 EtherCAT Master - I/O Mapping
	5.5.12.2.5 EtherCAT Master - Status / Information Tabs

	5.5.12.3 EtherCAT Slave Configuration
	5.5.12.3.1 EtherCAT Slave - General
	5.5.12.3.2 EtherCAT Slave - Process Data
	5.5.12.3.3 EtherCAT Slave - Edit PDO List
	5.5.12.3.4 EtherCAT Slave - Startup Parameters
	5.5.12.3.5 EtherCAT Slave - I/O Mapping
	5.5.12.3.6 EtherCAT Slave - Status and Information

	5.5.13 EtherNet/IP
	5.5.13.1 EtherNet/IP
	5.5.13.2 EtherNet/IP Scanner Configuration
	5.5.13.2.1 General
	5.5.13.2.2 Connections
	5.5.13.2.3 Assemblies
	5.5.13.2.4 EtherNet/IP I/O Mapping

	5.5.13.3 EtherNet/IP Adapter Configuration
	5.5.13.3.1 General
	5.5.13.3.2 EtherNet/IP Adapter: I/O Mapping

	5.5.13.4 EtherNet/IP Module Configuration
	5.5.13.4.1 Assemblies
	5.5.13.4.2 EtherNet/IP Module: I/O Mapping

	5.5.14 IEC 60870-5-104 Server
	5.5.14.1 Type of data
	5.5.14.2 Double Points
	5.5.14.2.1 Digital Input Double Points
	5.5.14.2.2 Digital Output Double Points

	5.5.14.3 General Parameters
	5.5.14.4 Data Mapping
	5.5.14.5 Link Layer
	5.5.14.6 Application Layer
	5.5.14.7 Server Diagnostic
	5.5.14.8 Commands Qualifier

	5.5.15 PROFINET Controller

	5.6 Communication Performance
	5.6.1 MODBUS Server
	5.6.1.1 CPU’s Local Interfaces
	5.6.1.2 Remote Interfaces

	5.6.2 OPC DA Server
	5.6.3 OPC UA Server
	5.6.4 IEC60870-5-104 Server

	5.7 System Performance
	5.7.1 I/O Scan Time
	5.7.2 Memory Card

	5.8 RTC Clock
	5.8.1 Function Blocks for RTC Reading and Writing
	5.8.1.1 Function Blocks for RTC Reading
	5.8.1.1.1 GetDateAndTime
	5.8.1.1.2 GetTimeZone
	5.8.1.1.3 GetDayOfWeek

	5.8.1.2 RTC Writing Functions
	5.8.1.2.1 SetDateAndTime
	5.8.1.2.2 SetTimeZone

	5.8.2 RTC Data Structures
	5.8.2.1 EXTENDED_DATE_AND_TIME
	5.8.2.2 DAYS_OF_WEEK
	5.8.2.3 RTC_STATUS
	5.8.2.4 TIMEZONESETTINGS

	5.9 User Files Memory
	5.10 Memory Card
	5.10.1 Project Preparation
	5.10.2 Project Transfer
	5.10.3 MasterTool Access

	5.11 CPU’s Informative and Configuration Menu
	5.12 Function Blocks and Functions
	5.12.1 Special Function Blocks for Serial Interfaces
	5.12.1.1 SERIAL_CFG
	5.12.1.2 SERIAL_GET_CFG
	5.12.1.3 SERIAL_GET_CTRL
	5.12.1.4 SERIAL_GET_RX_QUEUE_STATUS
	5.12.1.5 SERIAL_PURGE_RX_QUEUE
	5.12.1.6 SERIAL_RX
	5.12.1.7 SERIAL_RX_EXTENDED
	5.12.1.8 SERIAL_SET_CTRL
	5.12.1.9 SERIAL_TX

	5.12.2 Inputs and Outputs Update
	5.12.2.1 REFRESH_INPUT
	5.12.2.2 REFRESH_OUTPUT

	5.12.3 PID Function Block
	5.12.4 Timer Retain
	5.12.4.1 TOF_RET
	5.12.4.2 TON_RET
	5.12.4.3 TP_RET

	5.12.5 Non-Redundant Timer
	5.12.5.1 TOF_NR
	5.12.5.2 TON_NR
	5.12.5.3 TP_NR

	5.12.6 User Log
	5.12.6.1 UserLogAdd
	5.12.6.2 UserLogDeleteAll

	5.12.7 ClearRtuDiagnostic
	5.12.8 ClearEventQueue

	5.13 SNMP
	5.13.1 Introduction
	5.13.2 SNMP nas UCPs Nexto
	5.13.3 Private MIB
	5.13.4 SNMP Configuration
	5.13.5 User and SNMP Communities

	6 Redundancy with NX3030 CPU
	6.1 Introduction
	6.2 Technical Description and Configuration
	6.2.1 Minimum Configuration of a Redundant CPU (Not Using PX2612 Panel)
	6.2.2 Typical Configurations of a Redundant CPU
	6.2.2.1 NX5001 Modules Addition for PROFIBUS Networks
	6.2.2.2 NX5000 Modules Addition for Ethernet Networks

	6.2.3 NX4010 Module
	6.2.3.1 NX4010 Features

	6.2.4 Redundancy Control Panel PX2612
	6.2.4.1 PX2612 Features

	6.2.5 Interconnections between Half-Clusters and the Redundancy Control Panel PX2612
	6.2.6 General Characteristics of a Redundant CP
	6.2.7 Purchase Data

	6.3 Principles of Operation
	6.3.1 Identification of an NX3030 CPU
	6.3.2 Single Redundant Project
	6.3.3 Redundant Project Structure
	6.3.3.1 Redundancy Template
	6.3.3.2 Single and Cyclic Task MainTask
	6.3.3.3 MainPrg Program
	6.3.3.4 ActivePrg Program
	6.3.3.5 NonSkippedPrg Program
	6.3.3.6 Redundant and Non-redundant Variables
	6.3.3.7 Redundant and Non-redundant %I Variables
	6.3.3.8 Redundant and Non-redundant %Q Variables
	6.3.3.9 Redundant and Non-redundant %M Variables
	6.3.3.10 Redundant and Non-redundant Symbolic Variables

	6.3.4 Multiple Mapping
	6.3.5 Diagnostics, Commands and User Data Structure
	6.3.6 Cyclic Synchronization Services through NETA and NETB
	6.3.6.1 Diagnostics and Commands Exchange
	6.3.6.2 Redundant Data Synchronization
	6.3.6.3 Redundant Forcing List Synchronization

	6.3.7 Sporadic Synchronization Services through NETA and NETB
	6.3.7.1 Project Synchronization

	6.3.8 Project Synchronization Disabling
	6.3.9 PROFIBUS Network Configuration
	6.3.9.1 PROFIBUS Redundancy
	6.3.9.2 PROFIBUS Failure Modes Vital and Not-Vital

	6.3.10 Redundant Ethernet Networks with NIC Teaming
	6.3.11 IP Change Methods
	6.3.11.1 Fixed IP
	6.3.11.2 Exchange IP
	6.3.11.3 Active IP
	6.3.11.4 Multiple IP

	6.3.12 NIC Teaming and Active IP Combined Use
	6.3.13 Ethernet Interfaces Use with Vital Fault Indication
	6.3.13.1 Failure in Ethernet Interface
	6.3.13.2 Failure in Connected MODBUS Server

	6.3.14 OPC DA Communication Use with Redundant Projects
	6.3.15 Redundant CPU States
	6.3.15.1 Not-Configured State
	6.3.15.2 Starting State
	6.3.15.3 Active State
	6.3.15.4 Stand-By State
	6.3.15.5 Inactive State

	6.3.16 PX2612 Redundancy Command Panel Functions
	6.3.16.1 PX2612 Buttons
	6.3.16.2 PX2612 LEDs
	6.3.16.3 PX2612 Relays

	6.3.17 Transition between Redundancy States
	6.3.17.1 Transition 1 – Not-Configured to Starting
	6.3.17.2 Transition 2 – Starting to Not-Configured
	6.3.17.3 Transition 3 – Starting to Inactive
	6.3.17.4 Transition 4 – Starting to Active
	6.3.17.5 Transition 5 – Starting to Stand-by
	6.3.17.6 Transition 6 – Inactive to Not-Configured
	6.3.17.7 Transition 7 – Active to Not-Configured
	6.3.17.8 Transition 8 – Active to Inactive
	6.3.17.9 Transition 9 – Active to Stand-by
	6.3.17.10 Transition 10 – Stand-by to Not-Configured
	6.3.17.11 Transition 11 – Stand-by to Inactive
	6.3.17.12 Transition 12 – Stand-by to Active

	6.3.18 First Instants in Active State
	6.3.19 Common Failures which Cause Automatic Switchovers between Half-Clusters
	6.3.20 Failures Associated to Switchovers between Half-Clusters Managed by the User
	6.3.21 Fault Tolerance
	6.3.21.1 Simple Failure with Unavailability
	6.3.21.2 Simple Failure without Unavailability Causing a Switchover
	6.3.21.3 Double Failure without Unavailability Causing a Switchover

	6.3.22 Redundancy Overhead

	6.4 Redundant CPU Programming
	6.4.1 Wizard for a New Redundant Project Creation
	6.4.2 Half-Clusters Configuration
	6.4.2.1 Fixed Configuration in the 0 to 5 Rack Positions

	6.4.3 Ethernet Ports Configuration in the CPU NX3030 (NET 1 and NET 2)
	6.4.3.1 IP Address Configuration
	6.4.3.2 NIC Teaming between NET 1 and NET 2
	6.4.3.3 Vital failure setting in NET 1 and NET 2

	6.4.4 NX5001 Modules Configuration
	6.4.4.1 Insertion or Removal of NX5001 modules
	6.4.4.2 NX5001 Modules Parameters Adjust
	6.4.4.3 PROFIBUS Remotes Configuration

	6.4.5 NX5000 Modules Configuration
	6.4.5.1 NX5000 Modules Insertion or Removal
	6.4.5.2 NX5000 Modules Configuration
	6.4.5.3 NX5000 Modules Grouping with NIC Teaming Redundancy
	6.4.5.3.1 Failure Vital Setting

	6.4.6 NX4010 Redundancy Configuration
	6.4.7 I/O Drivers Configuration
	6.4.8 MainTask Configuration
	6.4.8.1 ActivePrg Program
	6.4.8.2 NonSkippedPrg Program

	6.4.9 Redundancy Configuration Object
	6.4.10 GVL Module_Diagnostics
	6.4.11 GVLs with Redundant Symbolic Variables
	6.4.12 POUs from the Program Type with Redundant Symbolic Variables
	6.4.13 Breakpoints Utilization in Redundant Systems
	6.4.14 MODBUS Instances Managing in Redundant System
	6.4.15 Limitations on a Redundant PLC Programming
	6.4.15.1 Limitations in Redundant GVLs and POUs
	6.4.15.2 Non-redundant Program Limitations (NonSkippedPrg)

	6.4.16 Getting the Redundancy State of a Half-Cluster
	6.4.17 Reading Non-Redundant Diagnostics

	6.5 Redundant CPU Program Downloading
	6.5.1 Initial Downloading of a Redundant Project
	6.5.1.1 First Step – IP Address Discovering for MasterTool Connection
	6.5.1.2 Second Step – Verifying IP Addresses Conflict
	6.5.1.3 Third Step – Preparing MasterTool Connection (Set Active Path)
	6.5.1.4 Forth Step – Identifying the NX3030 CPU and Verifying the CPU Display
	6.5.1.5 Fifth Step – Redundant Project Downloading

	6.5.2 MasterTool Connection with a NX3030 CPU from a Redundant PLC
	6.5.3 Modification Download in a Redundant Project
	6.5.4 Offline and Online Modifications Download
	6.5.4.1 Modifications which Demand Offline Download and the Interruption of the Process Control
	6.5.4.2 Modifications which Demand Offline Download
	6.5.4.3 Modifications which Allow Online Download

	6.5.5 Online Download of Modifications
	6.5.6 Offline Download of Modifications with Process Control Interruption
	6.5.7 Previous Planning for Offline Modifications without Process Control Interruption
	6.5.7.1 Previous Planning for Hot Modifications in Redundant PROFIBUS Networks
	6.5.7.1.1 Step 1 – Plan Future Expansion of the Remotes Inserted in the PROFIBUS Network Initial Version
	6.5.7.1.2 Step 2 – Insert the Redundant PROFIBUS Network Initial Version in the Project
	6.5.7.1.3 Step 3 – Allocate %I and %Q Variables Areas for the PROFIBUS Network considering Future Remote Expansion

	6.5.7.2 Previous Planning for Other Hot Modifications
	6.5.7.3 Incompatibility of Applications
	6.5.7.4 Project Update due to MasterTool IEC XE Update
	6.5.7.4.1 Updating Project from Versions Previous to 2.00 to version 2.00 or Higher

	6.5.8 Exploring the Redundancy for Offline downloading of Modifications without Interruption of the Process control
	6.5.8.1 Step 1 – Verify Basic Requirements Attending
	6.5.8.2 Step 2 – Don’t Download in Group Modifications which can be downloaded Online
	6.5.8.3 Step 3 – Previous Project Backup
	6.5.8.4 Step 4 – Cares in Editing the Offline Downloaded Modifications
	6.5.8.5 Step 5 – Inactive PLC Project Synchronism Disabling
	6.5.8.6 Step 6 – Physical Modifications Executing
	6.5.8.7 Step 7 – Download the Offline Modifications in the Non-Active PLC
	6.5.8.8 Step 8 – Set the Non-Active PLC Back to Run Mode to make go back to Stand-by State
	6.5.8.9 Step 9 – Execute Switchover between Active and Stand-by PLCs
	6.5.8.10 Step 10 – Projects Synchronism Enabling in the Active PLC
	6.5.8.11 Step 11 – Optional Reorganization of PLC and PROFIBUS Networks in Active State

	6.6 Redundancy Maintenance
	6.6.1 Modules Hot Swapping in a Redundant PLC
	6.6.2 MasterTool Warning Messages
	6.6.2.1 Blocking of Redundant or Non-Redundant Project Download
	6.6.2.2 Warnings before Commands which may stop the Active PLC
	6.6.2.3 Alert before Logging in to Non-Active CP

	6.6.3 Redundancy Diagnostics on NX3030 CPU Graphic Display
	6.6.3.1 CP Redundancy Status
	6.6.3.2 Screens below the REDUNDANCY Menu

	6.6.4 Redundancy Diagnostics Structure
	6.6.4.1 Redundancy Diagnostics
	6.6.4.2 Redundancy Commands
	6.6.4.3 User Information Exchanged between PLCA and PLCB
	6.6.4.4 Modbus Diagnostics used at Redundancy
	6.6.4.5 Redundancy Event Log

	6.6.5 PX2612 Panel Test
	6.6.5.1 Test Mode Entry
	6.6.5.2 Test Mode Manual and Automatic Outputs
	6.6.5.3 LEDs Testing
	6.6.5.4 Buttons Test
	6.6.5.5 Relay Test
	6.6.5.6 Suggested Sequence for PX2612 Test Executing

	7 Maintenance
	7.1 Module Diagnostics
	7.1.1 One Touch Diag
	7.1.2 Diagnostics via LED
	7.1.2.1 DG (Diagnostic)
	7.1.2.2 WD (Watchdog)
	7.1.2.3 RJ45 Connector LEDs

	7.1.3 Diagnostics via System Web Page
	7.1.4 Diagnostics via Variables
	7.1.4.1 Summarized Diagnostics
	7.1.4.2 Detailed Diagnostics

	7.1.5 Diagnostics via Function Blocks
	7.1.5.1 GetTaskInfo

	7.2 Graphic Display
	7.3 System Log
	7.4 Not Loading the Application at Startup
	7.5 Power Supply Failure
	7.6 Common Problems
	7.7 Troubleshooting
	7.8 Preventive Maintenance

	8 Annex. DNP3 Interoperability
	8.1 DNP3 Device Profile
	8.2 DNP V3.0 Implementation Table

