
LibSparkPlug
User Manual

MU214622 Rev. A

December 5, 2024

General Supply Conditions

No part of this document may be copied or reproduced in any form without the prior written consent of Altus Sistemas de
Automação S.A. who reserves the right to carry out alterations without prior advice.

According to current legislation in Brazil, the Consumer Defense Code, we are giving the following information to clients
who use our products, regarding personal safety and premises.

The industrial automation equipment, manufactured by Altus, is strong and reliable due to the stringent quality control
it is subjected to. However, any electronic industrial control equipment (programmable controllers, numerical commands,
etc.) can damage machines or processes controlled by them when there are defective components and/or when a programming
or installation error occurs. This can even put human lives at risk. The user should consider the possible consequences of
the defects and should provide additional external installations for safety reasons. This concern is higher when in initial
commissioning and testing.

The equipment manufactured by Altus does not directly expose the environment to hazards, since they do not issue any kind
of pollutant during their use. However, concerning the disposal of equipment, it is important to point out that built-in electronics
may contain materials which are harmful to nature when improperly discarded. Therefore, it is recommended that whenever
discarding this type of product, it should be forwarded to recycling plants, which guarantee proper waste management.

It is essential to read and understand the product documentation, such as manuals and technical characteristics before its
installation or use. The examples and figures presented in this document are solely for illustrative purposes. Due to possible
upgrades and improvements that the products may present, Altus assumes no responsibility for the use of these examples and
figures in real applications. They should only be used to assist user trainings and improve experience with the products and
their features.

Altus warrants its equipment as described in General Conditions of Supply, attached to the commercial proposals.
Altus guarantees that their equipment works in accordance with the clear instructions contained in their manuals and/or

technical characteristics, not guaranteeing the success of any particular type of application of the equipment.
Altus does not acknowledge any other guarantee, directly or implied, mainly when end customers are dealing with third-

party suppliers. The requests for additional information about the supply, equipment features and/or any other Altus services
must be made in writing form. Altus is not responsible for supplying information about its equipment without formal request.
These products can use EtherCAT® technology (www.ethercat.org).

COPYRIGHTS
Nexto, MasterTool, Grano and WebPLC are the registered trademarks of Altus Sistemas de Automação S.A.
Windows, Windows NT and Windows Vista are registered trademarks of Microsoft Corporation.

OPEN SOURCE SOFTWARE NOTICE
To obtain the source code under GPL, LGPL, MPL and other open source licenses, that is contained in this product, please

contact opensource@altus.com.br. In addition to the source code, all referred license terms, warranty disclaimers and copyright
notices may be disclosed under request.

I

www.ethercat.org
opensource@altus.com.br

CONTENTS

Contents

1. Introduction . 1
1.1. Documents Related to this Manual . 1
1.2. Technical Support . 1
1.3. Warning Messages Used in this Manual . 1

2. Sparkplug Features . 2
2.1. Sparkplug Terminology in this Manual . 2

2.1.1. MQTT Broker . 2
2.1.2. EoN . 3
2.1.3. Device . 3
2.1.4. Metric . 3
2.1.5. Host Application . 3

2.1.5.1. Primary Host . 3
2.1.5.2. Non-Primary Hosts . 3

2.2. Compliance of Nexto Controllers with Sparkplug Specification . 4
2.3. Buffering Capability of Nexto Controllers . 4

2.3.1. Selective Buffering . 4
2.3.2. Buffer Size . 4

3. Configuration . 6
3.1. Software Versions . 6
3.2. Library LibSparkplug . 6

3.2.1. Function Block SPB_FB_SPARKPLUG . 7
3.2.1.1. in_xEnable . 7
3.2.1.2. in_sGroupId . 8
3.2.1.3. in_sEonId . 8
3.2.1.4. in_sPrimaryHostId . 8
3.2.1.5. in_pEonMetrics . 8
3.2.1.6. in_usiQtyEonMetrics . 9
3.2.1.7. in_pDevices . 9
3.2.1.8. in_usiQtyDevices . 10
3.2.1.9. in_pStorageBuffer . 10
3.2.1.10. in_uiSizeBuffer . 11
3.2.1.11. in_stMqttParameters . 11

3.2.1.11.1. sClientId . 11
3.2.1.11.2. sHostName . 11
3.2.1.11.3. sUser . 11
3.2.1.11.4. sPass . 12
3.2.1.11.5. uiPort . 12
3.2.1.11.6. uiKeepAlive . 12

II

CONTENTS

3.2.1.11.7. xEnableTLS . 12
3.2.1.11.8. sCertFilename . 13
3.2.1.11.9. sClientCert . 13
3.2.1.11.10. sClientKey . 13

3.2.1.12. in_timTimePeriodic . 13
3.2.1.13. out_xError . 13
3.2.1.14. out_xIsConnected . 13
3.2.1.15. out_xIsBuffering . 14
3.2.1.16. out_stStatus . 14

3.2.1.16.1. bDeviceNotFound . 14
3.2.1.16.2. bInvalidJson . 14
3.2.1.16.3. eProtobufStatus . 14
3.2.1.16.4. eMqttErrorCode . 15

3.2.1.17. out_eError . 15
3.2.2. Function Block SPB_FB_DEVICE . 15

3.2.2.1. in_xEnable . 16
3.2.2.2. in_sDeviceId . 16
3.2.2.3. in_usiMaxMetrics . 16
3.2.2.4. in_pMetrics . 16
3.2.2.5. out_eStatus . 17
3.2.2.6. out_eProtobufStatus . 17

3.2.3. Function Block SPB_FB_METRICS . 17
3.2.3.1. in_sName . 18
3.2.3.2. in_pValue . 18
3.2.3.3. in_usiMaxPayloadSize . 19
3.2.3.4. in_eDataType . 19
3.2.3.5. in_stPublishParameters . 19

3.2.3.5.1. ePubMode . 20
3.2.3.5.2. pBufferVariable . 20
3.2.3.5.3. rDeadBandValue . 20
3.2.3.5.4. usiTrunc . 21

3.2.3.6. in_xTrigger . 21
3.2.3.7. in_xEnableHist . 21

3.3. Diagnostics . 21
3.4. Example of Usage of Library LibSparkplug . 22

3.4.1. Variable Section of POU EoN . 22
3.4.2. Code Section of POU EoN . 25

3.5. Example of Authentication Configuration . 30
3.6. Example of TLS Security Configuration . 31

3.6.1. Adjust Clock and Keep them Synchronized . 32
3.6.2. Generate Certificates . 32
3.6.3. Install Certificate Files in the MQTT Broker . 34
3.6.4. Install Certificate Files in the EoN . 35
3.6.5. Edit the Configuration File of MQTT Broker Mosquitto . 35
3.6.6. Adjust the EoN Application . 36

3.7. Effects of Online Change . 36

III

1. INTRODUCTION

1. Introduction
1.1. Documents Related to this Manual

1.2. Technical Support
For Altus Technical Support contact in São Leopoldo, RS, call +55 51 3589-9500. For further information regarding the

Altus Technical Support existent on other places, see https://www.altus.com.br/en/ or send an email to altus@altus.com.br.
If the equipment is already installed, you must have the following information at the moment of support requesting:

The model from the used equipments and the installed system configuration
The product serial number
The equipment revision and the executive software version, written on the tag fixed on the product’s side
CPU operation mode information, acquired through MasterTool IEC XE
The application software content, acquired through MasterTool IEC XE
Used programmer version

1.3. Warning Messages Used in this Manual
In this manual, the warning messages will be presented in the following formats and meanings:

DANGER

Reports potential hazard that, if not detected, may be harmful to people, materials, environ-
ment and production.

CAUTION

Reports configuration, application or installation details that must be taken into consideration
to avoid any instance that may cause system failure and consequent impact.

ATTENTION

Identifies configuration, application and installation details aimed at achieving maximum
operational performance of the system.

1

https://www.altus.com.br/en/
altus@altus.com.br

2. SPARKPLUG FEATURES

2. Sparkplug Features
ATTENTION

Copyright©2016-2022 Eclipse Foundation. This document includes material copied from
or derived from the Sparkplug Specification: https://www.eclipse.org/tahu/spec/sparkplug_
spec.pdf.

2.1. Sparkplug Terminology in this Manual
This section defines the main Sparkplug related terms used in this manual. These definitions may not be complete from

the point of view of the Sparkplug specification. These definitions consider only a subset of applications that use Nexto Series
controllers as EoNs (Edge Nodes).

Figure 1: Main components of a Sparkplug infrastructure using a Nexto Series controller as EoN

The previous figure shows that an EoN implemented in a Nexto controller can contain several metrics and several devices.
In addition, each of these devices can contain several metrics.

2.1.1. MQTT Broker

Also known as MQTT server.
Program or device that acts as an intermediary between MQTT clients which publish application messages and clients

which have made subscriptions. MQTT enabled infrastructure requires that one or more MQTT brokers are present in the
infrastructure.

2

https://www.eclipse.org/tahu/spec/sparkplug_spec.pdf
https://www.eclipse.org/tahu/spec/sparkplug_spec.pdf

2. SPARKPLUG FEATURES

2.1.2. EoN

Also known as Edge Node.
Any v3.1.1 or v5.0 compliant MQTT client application that manages an MQTT session and provides the physical and/or

logical gateway functions required to participate in the Topic Namespace and Payload definitions described in the Sparkplug
specification. The EoN is responsible for any local protocol interface to existing devices (PLCs, RTUs, Flow Computers,
Sensors, etc.) and/or any local discrete I/O, and/or any logical internal process variables (PVs).

In a Nexto Series controller, it is possible to create several instances of an EoN (see section Function Block SPB_FB_SPARKPLUG).
The user must judge if more than one instance makes sense for his application.

2.1.3. Device

Physical or logical device that makes sense in the context of a distributed Sparkplug application. Often times a Sparkplug
Device will be a physical PLC, RTU, Flow Computer, Sensor, etc. However, a Sparkplug device could also represent a logical
grouping of data points as makes sense for the specific Sparkplug Application being developed. For example, it could represent
a set of data points across multiple PLCs that make up a logical device that makes sense within the context of that application.

Considering the specific case of a Nexto Controller, it is possible to create several instances of devices below instances of
EoNs (see section Function Block SPB_FB_DEVICE). The following examples of devices make sense in a Nexto Controller:

An I/O module in the local bus.
An I/O module in a remote bus (bus expansion, remote I/O device, etc).
A remote compact device (remote I/O device).
A logic device (a group of logically related variables).

2.1.4. Metric

A Sparkplug metric typically includes a name, value, and timestamp.
Considering the specific case of a Nexto Controller, it is possible to create several instances of metrics below instances

of EoNs or below instances of devices (see section Function Block SPB_FB_METRICS). The following examples of devices
make sense in a Nexto Controller:

Value of a logical variable (internal data).
Value of a digital input or analog input.
Value of a digital output or analog output (commands received from a host application).

2.1.5. Host Application

A Sparkplug Host Application is typically at a central location and primarily receives data from multiple EoNs. A host
application may also send command messages to EoNs for writing to output metrics of EoNs and Devices below EoNs.

From the point of view of a Nexto controller as an EoN, two types of host application exist: a single Primary Host and any
number of Non-Primary Hosts.

2.1.5.1. Primary Host

One single Primary Host must be configured in an EoN of a Nexto controller.
If the connection between this Primary Host and the MQTT server is lost, the EoN starts buffering data, as described in

section Buffering Capability of Nexto Controllers.
While the EoN is buffering, it does not transmit data anymore to the MQTT broker, even if the EoN is still connected to

the MQTT broker.

2.1.5.2. Non-Primary Hosts

Any number of Non-Primary Hosts can exist and receive data transmitted from an EoN configured in a Nexto Controller,
as well send command messages to output metrics of this EoN.

It is not necessary to make any configuration in an EoN of a Nexto controller for declaring Non-Primary Hosts. Data and
command retransmissions are entirely managed by the MQTT broker.

3

2. SPARKPLUG FEATURES

ATTENTION

While the EoN is buffering, it does not transmit data anymore to the MQTT broker, even
if the EoN is still connected to the MQTT broker. In this situation, data displayed in a
Non-Primary Host can be outdated and still indicate quality good.

2.2. Compliance of Nexto Controllers with Sparkplug Specification
A Nexto Series controller complies with version 3.0.0 of Sparkplug specification, and use the Sparkplug B encoding scheme

(spBv1.0/# namespace).
It can play the role of an EoN in a Sparkplug infrastructure. Below this EoN, it is possible to configure devices and metrics.

Below each device, it is also possible to configure metrics.

2.3. Buffering Capability of Nexto Controllers
A Nexto Series controller as an EoN has buffering capability.
When both the EoN and the Primary Host are connected to the MQTT broker, data is transmitted from the EoN to the

MQTT broker, and then this data is relayed to the Primary Host and, also, to Non-Primary Hosts.
However, while the EoN or the Primary Host is not connected to the MQTT broker, the EoN buffers data in internal

memory, instead of transmitting this data to the MQTT broker. A circular queue with a configurable storage capability is used
for this purpose. If the storage capability of this circular queue overflows, older data is lost and overwritten with newer data.

Afterward, when the connection with MQTT broker is reestablished with both EoN and Primary Host, the buffered data is
transmitted from the EoN to the MQTT broker, and then relayed to the Primary Host and Non-Primary Hosts, as "historical
data".

With this feature, one can preserve data events that otherwise would be lost.

ATTENTION

Note that when the connection between the Primary Host and the MQTT broker is lost,
the EoN will not transmit data to the MQTT broker. Therefore, data with wrong values
(outdated) and quality good can appear in Non-Primary Hosts.

2.3.1. Selective Buffering

It is possible to select which metrics will be buffered (see input in_xEnableHist of Function Block SPB_FB_METRICS).

2.3.2. Buffer Size

The user can define the buffer size using inputs in_pStorageBuffer and in_uiSizeBuffer of Function Block SPB_FB_SPARKPLUG.
The minimum buffer size must be 267, if buffering is enabled. It is possible to disable buffering by informing a size of zero
bytes. The maximum buffer size is 65536 bytes.

The bigger the buffer size, the lower is the probability of losing historical data due to buffer overflow.
The following table shows the number of bytes allocated by each historical record of a metric according to its data type

(data types are defined by input in_eDataType of Function Block SPB_FB_METRICS).

Sparkplug Data Type IEC 611313 Data Type Bytes per Record
Int8 SINT 13
Int16 INT 14
Int32 DINT 16
Int64 LINT 20
UInt8 USINT 13

UInt16 UINT 14
UInt32 UDINT 16
UInt64 ULINT 20

4

2. SPARKPLUG FEATURES

Sparkplug Data Type IEC 611313 Data Type Bytes per Record
Float REAL 16

Double LREAL 20
Boolean BOOL 13
sString STRING(n) 12 + n (maximum for a string with "n" bytes)

Table 1: Bytes allocated for each historical records in buffer

5

3. CONFIGURATION

3. Configuration
This chapter describes the configuration of the Sparkplug communication with the Mastertool Programming System for a

Nexto controller. The list of Nexto controllers that support Sparkplug appears in chapter Introduction.

3.1. Software Versions
The Sparkplug features described in this manual require the programming system Mastertool IEC XE (MT8500) version

3.70 or newer.

3.2. Library LibSparkplug
For configuring a Nexto controller as an EoN, it is necessary to add the library LibSparkplug in the Library Manager.

Figure 2: Adding library LibSparkplug in the Library Manager

The following figure shows the components of this library that the user must concern.

6

3. CONFIGURATION

Figure 3: Components of library LibSparkplug

The following subsections describe the function blocks that make part of this library. The data types are described together
with the function block descriptions.

3.2.1. Function Block SPB_FB_SPARKPLUG

This is the main function block of the library. It is possible to declare several instance of this FB. Each instance of this FB
creates a different EoN in the PLC.

The following diagram shows the inputs and outputs of this FB.

Figure 4: Function Block SPB_FB_SPARKPLUG

The following subsection describe the inputs and ouptus of this FB.

3.2.1.1. in_xEnable

Type: BOOL

When this input changes from FALSE to TRUE, the EoN is created, the necessary processes for Sparkplug communication
are started and the connection with the MQTT broker is established. Devices and metrics inside the EoN are also created.

When this input changes from TRUE to FALSE, the EoN disconnects from the MQTT broker.
Therefore, keep this input equal TRUE while Sparkplug communication with this EoN is desired.

7

3. CONFIGURATION

3.2.1.2. in_sGroupId

Type: STRING(80)

This string, with up to 80 characters, defines the name of the Sparkplug group to which the EoN belongs.

3.2.1.3. in_sEonId

Type: STRING(80)

This string, with up to 80 characters, defines the name of the EoN. This name must be unique inside the Sparkplug group
it belongs (see input parameter in_sGroupId).

3.2.1.4. in_sPrimaryHostId

Type: STRING(80)

This string, with up to 80 characters, defines the name configured for the Primary Host.
The EoN must know the name of the Primary Host to monitor its communication status. This is necessary due to the buffer-

ing capability of Nexto Series controllers as an EoN, as described in the section Buffering Capability of Nexto Controllers.

3.2.1.5. in_pEonMetrics

Type: POINTER TO SPB_FB_METRICS

This input must be initialized with the address of an array with type SPB_FB_METRICS. This array contains the user-
defined metrics for the EoN.

Important notes:

The first position of the array with metrics must be zero. Example for an array with 10 user-defined metrics:

afbEoN_Metrics : ARRAY [0 ... 9] OF LibSparkplug.SPB_FB_METRICS;

Even if only one metric exists, an array must be used starting with index 0. Example for an array with only one user-
defined metric:

afbEoN_Metric : ARRAY [0 ... 0] OF LibSparkplug.SPB_FB_METRICS;

Use the ADR function to initialize this address correctly. Example:

ADR(afbEoN_Metrics[0])

If this input’s value is NULL, no user-defined metrics exist for the EoN. In this case, it is still possible to create metrics
inside devices (see Function Block SPB_FB_DEVICE).

8

3. CONFIGURATION

3.2.1.6. in_usiQtyEonMetrics

Type: USINT

This input informs the quantity of user-defined metrics in the array pointed by the input in_pEonMetrics.
Notes:

The minimum number of metrics below the EoN is 0.
The maximum number of metrics below the EoN is 253.
The value of this input should be 10, considering the following example of an array with 10 user defined metrics:

afbEoN_Metrics : ARRAY [0 ... 9] OF LibSparkplug.SPB_FB_METRICS;

Example of alternative way for defining this input:

TO_USINT(SIZEOF(afbEoN_Metrics) / SIZEOF(LibSparkplug.SPB_FB_METRICS));

The value 0 means that no user defined metrics exist for the EoN.

ATTENTION

If the value of in_usiQtyEonMetrics is assigned with a value different from the size of the
array pointed by the input in_pEonMetrics, a malfunction (exception) may occur in the pro-
gram execution.

3.2.1.7. in_pDevices

Type: POINTER TO SPB_FB_DEVICE

This input must be initialized with the address of the first position of an array with type SPB_FB_DEVICE. This array
contains the user-defined instances of devices for the EoN.

Notes:

The first position of the array with devices must be zero. Example for an array with 10 user-defined devices:

afbEoN_Devices : ARRAY [0 ... 9] OF LibSparkplug.SPB_FB_DEVICE;

Even if only one device exists, an array must be used starting with index 0. Example for an array with only one user-
defined device:

afbEoN_Device : ARRAY [0 ... 0] OF LibSparkplug.SPB_FB_DEVICE;

Use the ADR function to initialize this address correctly. Example:

ADR(afbEoN_Devices[0])

If this input’s value is NULL, no user-defined devices exist for the EoN.

9

3. CONFIGURATION

3.2.1.8. in_usiQtyDevices

Type: USINT

This input informs the quantity of user-defined devices in the array pointed by the input in_pDevices described in the
previous section.

Notes:

The minimum number of devices per EoN is 0 (no devices below the EoN).
The maximum number of devices per EoN is 255.
The value of this input should be 10, considering the following example of an array with 10 user defined metrics:

afbEoN_Devices : ARRAY [0 ... 9] OF LibSparkplug.SPB_FB_DEVICE;

Example of alternative way for defining this input:

TO_USINT(SIZEOF(afbEoN_Devices) / SIZEOF(LibSparkplug.SPB_FB_DEVICE));

ATTENTION

If the value of in_usiQtyDevices is assigned with a value different from the size of the ar-
ray pointed by the input in_pDevices, a malfunction (exception) may occur in the program
execution.

3.2.1.9. in_pStorageBuffer

Type: POINTER TO USINT

This input must be initialized with the address of the first position of an array of bytes (type USINT) used for the buffering
function (see section Buffering Capability of Nexto Controllers).

Notes:

The first position of the array must be zero. Example for an array with 1000 bytes:

ausiBuffer : ARRAY [0 ... 999] OF USINT;

Use the ADR function to initialize this address correctly. Example:

ADR(ausiBuffer[0])

If the value of this input is NULL, this means that no buffering is provided for the EoN.

10

3. CONFIGURATION

3.2.1.10. in_uiSizeBuffer

Type: UINT
This input informs the quantity of bytes in the array pointed by the input in_pStorageBuffer described in previous section.
Notes:

The minimum buffer size is 267. If the buffer has less than 267 bytes, the output out_xError will return the value
STORAGE_ERROR right after the first attempt to insert a metric in the buffer.
The maximum buffer size is 65536 bytes.
The value of this input should be 1000, considering the following example of an array with 1000 bytes:

ausiBuffer : ARRAY [0 ... 999] OF USINT;

Example of alternative way for defining this input:

TO_UINT(SIZEOF(ausiBuffer) / SIZEOF(USINT));

The value 0 means that no buffering is provided for the EoN.

ATTENTION

If the value of in_uiSizeBuffer is assigned with a value different from the size of the array
pointed by the input in_pStorageBuffer, a malfunction (exception) may occur in the program
execution.

3.2.1.11. in_stMqttParameters

Type: SPB_MQTT_PARAMETERS
This input is a structure that configures the connection with the MQTT broker.
The following subsections define the fields of this structure.

3.2.1.11.1. sClientId

Type: STRING(80)
This string is an optional client ID for the EoN. If this string is empty, a random ID is created.

3.2.1.11.2. sHostName

Type: STRING(80)
This string must contain an URL or an IP address for the MQTT broker.
Example: ’192.168.201.141’.

3.2.1.11.3. sUser

Type: STRING(80)
This string must contain an user name for authentication. If authentication is not required for connecting to the MQTT

broker, this string must be empty.

ATTENTION

For using this feature, it is also necessary to make appropriate configurations in the MQTT
broker. Pleaser read the documentation of the MQTT broker. An example is given in section
Example of Authentication Configuration.

11

3. CONFIGURATION

3.2.1.11.4. sPass

Type: STRING(80)

This string must contain a password for authentication. If authentication is not required for connecting to the MQTT broker,
this string must be empty.

ATTENTION

For using this feature, it is also necessary to make appropriate configurations in the MQTT
broker. Pleaser read the documentation of the MQTT broker. An example is given in section
Example of Authentication Configuration.

3.2.1.11.5. uiPort

Type: UINT
Default: 1883

This input defines the TCP port used for connection with the MQTT broker. Two options can be used:

1883: without encryption
8883: with TLS encryption

The TCP port must be configured in accordance with the MQTT broker configuration.

ATTENTION

It may be necessary to configure the firewall of computer running the MQTT broker for
accepting connection in this port.

3.2.1.11.6. uiKeepAlive

Type: UINT
Default: 60 seconds

This input defines the interval in seconds between keep-alive messages sent from the EoN to the MQTT broker for checking
the integrity of the connection between them.

The smaller this interval, the faster the EoN and the MQTT broker will detect a disconnection. In the other hand, a smaller
interval causes more traffic for sending more frequent keep alive messages.

A keep alive interval must be configured in all types of MQTT clients connected to an MQTT broker (EoNs, hosts, etc).
When the MQTT broker detects that some MQTT client is disconnected, it informs this disconnection to other MQTT clients,
for taking appropriate actions like the following:

If a host is informed by the MQTT broker about disconnection of an EoN, this host must change to bad the quality of
metrics coming from this EoN.
If a Nexto controller EoN is informed about disconnection of the primary host, this EoN must switch to the "buffering"
mode (see section out_xIsBuffering).

3.2.1.11.7. xEnableTLS

Type: BOOL
Default: FALSE

This input must be TRUE if the connection with the MQTT broker requires TLS encryption (versions 1.0, 1.1 or 1.2). In
this case, the MQTT broker must implement TLS encryption using a CA certificate file.

More details for setting up a connection with TLS encryption are described in section Example of Authentication Config-
uration.

12

3. CONFIGURATION

3.2.1.11.8. sCertFilename

Type: STRING(80)

This string must contain the name of the CA certificate file provided by the MQTT broker. This string must be initialized
only when the previous input xEnableTLS is TRUE.

More details for setting up a connection with TLS encryption are described in section Example of Authentication Config-
uration.

3.2.1.11.9. sClientCert

Type: STRING(80)

This string must contain the name of the EoN (MQTT client) certificate file, created from the CA certificate file provided
by the MQTT broker. This string must be initialized only when the previous input xEnableTLS is TRUE.

More details for setting up a connection with TLS encryption are described in section Example of Authentication Config-
uration.

3.2.1.11.10. sClientKey

Type: STRING(80)

This string must contain the name of the EoN (MQTT client) key that makes part of the client certificate. This string must
be initialized only when the previous input xEnableTLS is TRUE.

More details for setting up a connection with TLS encryption are described in section .

3.2.1.12. in_timTimePeriodic

Type: TIME
Default: T#1S

This input defines the period used for sampling changes in variables of metrics reported by exception or by deadand (section
ePubMode describes how to configure the report method: report by exception, deadband or trigger).

The minimum period is 1 second.

If the period is 0, changes are not detected using methods report by exception or deadband.
If the period is bigger than 0, but lower than 1 second, a period of 1 second is used.

ATTENTION

The real sampling period can exceed in_timTimePeriodic in some situations:
1) When the CPU is overloaded (too many metrics for this CPU model).
2) When the EoN publishes metrics. It takes some time between consecutive samples to
publish metrics.
3) If the MainTask interval is too high.

3.2.1.13. out_xError

Type: BOOL

The value TRUE in this output indicates that some error was detected by the function block.
To recover from this error, besides removing the error’s cause, it is necessary to disable and then enable again the function

block, using the input in_xEnable.
Other diagnostics described in the next sections explain the error’s cause.

3.2.1.14. out_xIsConnected

Type: BOOL

The value TRUE in this output indicates that the EoN is connected to the MQTT broker.
Note that it may take some time to update correctly this output. This happens because some types of disconnection are

detected using a keep-alive interval. See section uiKeepAlive.

13

3. CONFIGURATION

3.2.1.15. out_xIsBuffering

Type: BOOL

The value TRUE in this output indicates that the EoN is buffering metrics in internal storage, because some problem
prevents the transmission of these metrics to the primary host. After this problem is solved, the metrics buffered in the internal
storage will be transmitted as historical values (see section Buffering Capability of Nexto Controllers).

The following four situations can occur analysing out_xIsBuffering and out_xIsConnected together:

1. out_xIsBuffering = FALSE and out_xIsConnected = FALSE: this combination is only expected during initialization
phase of the function block.

2. out_xIsBuffering = FALSE and out_xIsConnected = TRUE: this is the normal situation when buffering is not neces-
sary, because both the EoN and the primary host are connected to the MQTT broker.

3. out_xIsBuffering = TRUE and out_xIsConnected = FALSE: the EoN is not conneted to the MQTT broker.
4. out_xIsBuffering = TRUE and out_xIsConnected = TRUE: the EoN is conneted to the MQTT broker, but the primary

host is not connected to the MQTT broker.

Note that it may take some time for updating correctly the outputs out_xIsConnected and out_xIsBuffering. This happens
because some types of disconnection are detected using a keep alive interval. The keep alive interval is configured for every
MQTT client (EoN and hosts). See section uiKeepAlive.

ATTENTION

While out_xIsBuffering = TRUE and out_xIsConnected = TRUE, the EoN does not publish
metrics to the MQTT broker. Therefore, a non-primary host may have metrics with outdated
values but with quality good.

3.2.1.16. out_stStatus

Type: SPB_STATUS

This output is a struct that shows status information about the function block and Sparkplug communication.
The following subitems describe the fields of this structure.

3.2.1.16.1. bDeviceNotFound

Type: BIT

A command received from a host application has specified a device not configured in this EoN.

3.2.1.16.2. bInvalidJson

Type: BIT

JSON published by the host application is invalid.

3.2.1.16.3. eProtobufStatus

Type: SPB_PROTOBUF_ERROR_CODE

This enumeration defines an error code related to the "Google protocol buffer" applied in the Sparkplug B specification.
The following values are defined in this enumeration:

NONE: no error.
METRIC_NOT_FOUND: command received from a host application specified a metric not configured in this EoN, or
the command does not included the alias field that identifies the metric.
PROTOBUF_PAYLOAD_INVALID: command received from a host application has encoding problems.
PROTOBUF_STRING_OVERFLOW: payload of string received in a command from a host application exceeds the
payload configured for this string in a metric.
FIELD_TAG_UNKNOWN: payload received from a host application has an unknown or not supported field.
METRIC_LIST_MISSING: internal error of function block. Contact the suport team of ALTUS if such a diagnostic
occurs.

14

3. CONFIGURATION

3.2.1.16.4. eMqttErrorCode

Type: LibMQTT.MQTT_ERR_CODE

This enumeration defines an error code related to the communication with the MQTT broker.
The value MQTT_NO_ERROR indicates that the MQTT communication is good.
The following values are defined in this enumeration:

MQTT_CONNECTION_PENDING
MQTT_NO_ERROR
MQTT_ERROR_NO_MEMORY
MQTT_ERROR_PROTOCOL_COMM
MQTT_ERROR_INVALID_PARAM
MQTT_ERROR_NO_CONNECTION
MQTT_ERROR_CONNECTION_REFUSED
MQTT_ERROR_NOT_FOUND
MQTT_ERROR_CONNECTION_LOST
MQTT_ERROR_TLS_CRYPTO
MQTT_ERROR_PLAYLOAD_SIZE
MQTT_ERROR_THREAD_NOT_SUPPORTED
MQTT_ERROR_AUTHORIZATION
MQTT_ERROR_ACL_DENIED
MQTT_ERROR_UNKNOWN
MQTT_ERROR_SYSTEM_CALL
MQTT_ERROR_EAI
MQTT_ERROR_PROXY

3.2.1.17. out_eError

Type: SPB_ERR_CODE

This output is an enumeration that defines an error code related to the Sparkplug library.
The following values are defined in this enumeration:

NONE: no error.
METRICS_TO_EON_OVERFLOW: number of metrics created by the user below the EoN exceed 253.
DEVICE_MISS_METRIC_LIST: some device does not have a metrics list. Any device must have at least one metric.
METRIC_PAYLOAD_SIZE_AS_ZERO: some metric created by the user informs payload size equal zero. This error
code applies for all metrics (created below the EoN and created below devices).
STORAGE_ERROR: an error was detected in the storage buffer.

3.2.2. Function Block SPB_FB_DEVICE

Below the EoN created using an instance of Function Block SPB_FB_SPARKPLUG, it is possible to create several devices.
This can be done using an array of instances of the Function Block SPB_FB_DEVICE (see input in_pDevices of Function
Block SPB_FB_SPARKPLUG).

The following diagram shows the inputs and outputs of the Function Block SPB_FB_DEVICE.

Figure 5: Function Block SPB_FB_DEVICE

The following subsection describe the inputs and ouptus of this FB.

15

3. CONFIGURATION

3.2.2.1. in_xEnable

Type: BOOL

When this input changes from FALSE to TRUE, this indicates for the EoN that the device and their metrics became active.
When this input changes from TRUE to FALSE, this indicates for the EoN that the device and their metrics became inactive.
Therefore, keep this input equal TRUE while Sparkplug communication with this device is desired.

3.2.2.2. in_sDeviceId

Type: STRING(80)

This string, with up to 80 characters, defines the name of the device inside the EoN. This name must be unique inside the
EoN it belongs.

3.2.2.3. in_usiMaxMetrics

Type: USINT

This input informs the quantity of user-defined metrics for the device, in the array pointed by the input in_pMetrics.
Notes:

The minimum number of metrics per device is 1 (it makes no sense to create a device without metrics).
The maximum number of metrics per device is 253.
The value of this input should be 10, considering the following example of an array with 10 user-defined metrics:

afbDev0_Metrics : ARRAY [0 ... 9] OF LibSparkplug.SPB_FB_METRICS;

Example of alternative way for defining this input:

TO_USINT(SIZEOF(afbDev0_Metrics) / SIZEOF(LibSparkplug.SPB_FB_METRICS));

ATTENTION

If the value of in_usiMaxMetrics is assigned with a value different from the size of the
array pointed by the input in_pMetrics, a malfunction (exception) may occur in the program
execution.

3.2.2.4. in_pMetrics

Type: POINTER TO SPB_FB_METRICS

This input must be initialized with the address of the first position of an array with type SPB_FB_METRICS. This array
contains the user-defined metrics for the device.

Notes:

The first position of the array must be zero. Example for an array with 10 user defined metrics:

afbDev0_Metrics : ARRAY [0 ... 9] OF LibSparkplug.SPB_FB_METRICS;

16

3. CONFIGURATION

Even if only one metric exists, an array must be used starting with index 0. Example for an array with only one user-
defined metric:

afbDev0_Metric : ARRAY [0 ... 0] OF LibSparkplug.SPB_FB_METRICS;

Use the ADR function to initialize this address correctly. Example:

ADR(afbDev0_Metrics[0])

If the value of this input is NULL, this means that no user defined metrics exist for the device. This should never occur,
because it makes no sense to create a device without metrics.

3.2.2.5. out_eStatus

Type: SPB_STATUS_DEVICE

This output is an enumeration that informs the status for the device and all their metrics.
The following values are defined in this enumeration:

Device_Dead: the device and all their metrics are disabled.
Device_Alive: the device and all their metrics are enabled.

3.2.2.6. out_eProtobufStatus

Type: SPB_PROTOBUF_ERROR_CODE

This is an enumeration that defines an error code related to the "google protocol buffer" used in the Sparkplug B specifica-
tion.

The following values are defined in this enumeration:

NONE: no error.
METRIC_NOT_FOUND: command received from a host application specified a metric not configured in this device.
PROTOBUF_PAYLOAD_INVALID: command received from a host application has encoding problems.
DATA_TYPE_METRIC_IS_DIFFERENT: the type of metric received in a command from a host application is dif-
ferent from the one informed by device on birth.
FIELD_TAG_UNKNOWN: payload received from a host application has an unknown or not supported field.
METRIC_LIST_MISSING: internal error of function block. Contact the support team if such a diagnostic occurs.

3.2.3. Function Block SPB_FB_METRICS

Below the EoN (instance of Function Block SPB_FB_SPARKPLUG) it is possible to create several metrics (see inputs
in_pEonMetrics and in_usiQtyEonMetrics of Function Block SPB_FB_SPARKPLUG).

Furthermore, below a device (instance of FB SPB_FB_DEVICE) it is possible to create several metrics (see inputs
in_pMetrics and in_usiMaxMetrics of Function Block SPB_FB_DEVICE).

For creating metrics below an EoN or a device, use an array of instances of the Function Block SPB_FB_METRICS. The
following diagram shows the inputs of this FB.

17

3. CONFIGURATION

Figure 6: Function Block SPB_FB_METRICS

The following subsection describe the inputs of this FB.

3.2.3.1. in_sName

Type: STRING(80)
Default value: "" (empty string)

This string, with up to 80 characters, defines the name of the metric in the EoN or in the device. This name must be unique
inside the EoN or device it belongs.

3.2.3.2. in_pValue

Type: POINTER TO USINT
Default value: 0 (NULL)

This input informs the address of the variable reported by the metric. Use the function ADR for passing the address of this
variable.

Example 1:
Example of declaration of a variable with type INT:

iVar : INT;

Example of pointer initialization for this variable:

ADR(iVar)

Example 2:
Example of declaration of a variable with type STRING:

sVar : STRING(20);

Example of pointer initialization for this variable:

ADR(sVar)

ATTENTION

A variable with type STRING must not exceed 254 bytes, so the maximum type is
STRING(254).

18

3. CONFIGURATION

3.2.3.3. in_usiMaxPayloadSize

Type: USINT

This input informs the size (in bytes) of the variable to be reported by the metric. For setting this input correctly, it is highly
recommended to use the construction "TO_USINT(SIZEOF(<type name>))".

For instance, if a variable has type INT, use the following function:

TO_USINT(SIZEOF(INT))

For instance, if a variable has type STRING(20), use the following function:

TO_USINT(SIZEOF(STRING(20)))

ATTENTION

A variable with type STRING must not exceed 254 bytes, so the maximum type
is STRING(254). When the limit type STRING(254) is used, the expression
TO_USINT(SIZEOF(STRING(254))) returns the value 255 (254 + 1). The additional byte
is reserved for a "zero" used for indicating the string termination.

3.2.3.4. in_eDataType

Type: SPB_PROTOBUF_DATA_TYPES

This input is an enumeration that informs the data type of the variable to be reported by the metric.
The following values are defined in this enumeration, and the equivalent types in the PLC languages (IEC 61131-3).

Int8: same as SINT
Int16: same as INT
Int32: same as DINT
Int64: same as LINT
UInt8: same as USINT
UInt16: same as UINT
UInt32: same as UDINT
UInt64: same as ULINT
Float: same as REAL
Double: same as LREAL
Boolean: same as BOOL
sString: same as STRING
Unknown: reserved for future expansion

3.2.3.5. in_stPublishParameters

Type: SPB_METRIC_PUBLISH_PARAMETERS

This input is a structure which fields are described in the following subsections.

19

3. CONFIGURATION

3.2.3.5.1. ePubMode

Type: SPB_PUBLISH_MODE
Default: ONLY_TRIGGER

This field is an enumeration that enables to select between three publish modes for defining when the metric is reported to
the MQTT broker.

ONLY_TRIGGER: the metric is only published when a rising edge is detected in input in_xTrigger of Function Block
SPB_FB_METRICS.
RBE: the metric is pubished when data changes. Very small changes can be disregarded using the field usiTrunc of the
input in_stPublishParameters of Function Block SPB_FB_METRICS.
DEAD_BAND_ABSOLUTE: the metric is published when data changes by a value bigger than an absolute deadband
defined by the field rDeadBandValue of the input in_stPublishParameters of Function Block SPB_FB_METRICS.

Regardless of the selected publish mode, the metric is always reported to the MQTT broker when a rising edge is detected
in input in_xTrigger of Function Block SPB_FB_METRICS.

ATTENTION

The publish mode DEAD_BAND_ABSOLUTE makes no sense and must not be used for
the data types Boolean (BOOL) and sString (STRING). If this is attempted, the metric will
not be reported based on deadband. For these data types, please use ONLY_TRIGGER or
RBE.

3.2.3.5.2. pBufferVariable

Type: POINTER TO USINT

This field is a pointer to an auxiliary variable necessary when the publish mode selected by the field ePubMode of input
in_stPublishParameters is RBE or DEAD_BAND_ABSOLUTE. If the publish mode is ONLY_TRIGGER, this pointer can be
NULL.

The auxiliary variable must have the same type of variable reported by the metric, pointed by input in_pValue of Function
Block SPB_FB_METRICS.

ATTENTION

If the type of the auxiliary variable is different from the type of variable reported by the
metric, a malfunction (exception) may occur during the program execution.

3.2.3.5.3. rDeadBandValue

Type: REAL

This field will only be considered when the following conditions are true:

The publish mode selected by the field ePubMode of input in_stPublishParameters is DEAD_BAND_ABSOLUTE.
The data type selected by the input in_eDataType is one of the following:

• Int8 (SINT)
• Int16 (INT)
• Int32 (DINT)
• Int64 (LINT)
• UInt8 (USINT)
• UInt16 (UINT)
• UInt32 (UDINT)
• UInt64 (ULINT)
• Float (REAL)
• Double (LREAL)

This field defines the value of an absolute deadband that avoids publishing metrics with small changes when publish mode
is DEAD_BAND_ABSOLUTE. The metric will only be published if the change in the variable reported by the metric is bigger
than rDeadBandValue.

20

3. CONFIGURATION

3.2.3.5.4. usiTrunc

Type: USINT

This field will only be considered when the following conditions are true:

The publish mode selected by the field ePubMode of input in_stPublishParameters is RBE.
The data type selected by the input in_eDataType is one of the following:

• Float (REAL)
• Double (LREAL)

This field informs the number of digits after the decimal point that will be considered for evaluating if the metric will be
published. For instance, considering that usiTrunc = 2:

If the value of the metric changes from 5.1 to 5.12, it will be published.
If the value of the metric changes from 5.12 to 5.123, it will not be published, because the change occurred in the third
digit after the decimal point.

This field avoids the transmission of very small changes in floating point metrics when publish mode is RBE.

ATTENTION

The maximum value considered for usiTrunc is 5. If a bigger value of usiTrunc is informed
by the user, it will be managed as if usiTrunc = 5.

3.2.3.6. in_xTrigger

Type: BOOL
Default: FALSE

When this input changes from FALSE to TRUE, the metric is reported to the MQTT broker. This happens even when the
publish mode is RBE or DEAD_BAND_ABSOLUTE.

This input is the only way for reporting the metric when the publish mode is ONLY_TRIGGER.

3.2.3.7. in_xEnableHist

Type: BOOL
Default: FALSE

When this input is TRUE, the metric will be stored in the storage buffer while the EoN or the primary host are disconnected
from the MQTT broker (see section Buffering Capability of Nexto Controllers).

Set this input to FALSE if buffering this metric is not necessary.

3.3. Diagnostics
All diagnostics related to Sparkplug communication are outputs of the function blocks described in section Library Lib-

Sparkplug of the current chapter:

Diagnostic outputs of Function Block SPB_FB_SPARKPLUG:

• out_xError
• out_xIsConnected
• out_xIsBuffering
• out_stStatus
• out_eError

Diagnostic outputs of Function Block SPB_FB_DEVICE:

• out_eStatus
• out_eProtobufStatus

Diagnostic outputs of Function Block SPB_FB_METRICS: none

21

3. CONFIGURATION

3.4. Example of Usage of Library LibSparkplug
This section shows an example for configuring an EoN with the following features:

Three metrics directly below the EoN.
Two devices below the EoN:

• Device 0 with two metrics.
• Device 1 with one metric.

Initially, the library LibSparkPlug was added in the Library Manager.
After this, the variables and code for configuring the EoN were inserted in a POU called Eon (POU of type PROGRAM

developed with ST language). The POU EoN was called inside the POU UserPrg.
Comments in the following subsections explain details about this example.

3.4.1. Variable Section of POU EoN

Figure 7: Variables of POU EoN

22

3. CONFIGURATION

The following text box is a copy of the variable section shown in the previous figure. It is intended to copy and paste this
example, should you want to test it.

PROGRAM EoN
VAR
// Variables for instance of EoN. Other inputs of instance passed directly in

the code section.
fbEoN : LibSparkplug.SPB_FB_SPARKPLUG; // Instance of the main FB

for the EoN
xEnableEon : BOOL := TRUE; // Variable for enabling the main

FB for the EoN
afbEonMetrics : ARRAY[0..2] OF LibSparkplug.SPB_FB_METRICS; // Array with FBs

for three metrics (0 .. 2) below the EoN
afbDevice : ARRAY[0..1] OF LibSparkplug.SPB_FB_DEVICE; // Array with FBs

for two devices (0 .. 1) below the EoN
abStorageBuffer : ARRAY[0..4999] OF USINT; // Array with the storage

buffer with 5000 bytes
stMqttParameter : LibSparkplug.SPB_MQTT_PARAMETERS; // Structure with

parameters for connection with the MQTT broker
xError : BOOL; // Output for indicating presence of an

error
xIsConnected : BOOL; // Output for indicating connection to

the MQTT borker
xIsBuffering : BOOL; // Output for indicating buffering

mode
stStatus : LibSparkplug.SPB_STATUS; // Structure with diagnostics

about Sparkplug communication
eError : LibSparkplug.SPB_ERROR_CODE; // Enumeration for indicating

an error code detected by this FB

// Variables for instance of Device 0 below the EoN. Other inputs of instance
passed directly in the code section.

xEnableDev0 : BOOL := TRUE; // Variable for enabling the FB
for Device 0

afbDev0Metrics : ARRAY[0..1] OF LibSparkplug.SPB_FB_METRICS; // Array with FBs
for the two metrics (0 .. 1) below Device 0

eStatusDev0 : LibSparkplug.SPB_STATUS_DEVICE; // Status for Device 0
eProtobufStatusDev0 : LibSparkplug.SPB_PROTOBUF_ERROR_CODE; // Protobuf error

codes for Device 0

// Variables for instance of Device 1 below the EoN. Other inputs of instance
passed directly in the code section.

xEnableDev1 : BOOL := TRUE; // Variable for enabling the FB
for Device 1

afbDev1Metrics : ARRAY[0..0] OF LibSparkplug.SPB_FB_METRICS; // Array with FB
for the one metric (0 .. 0) below Device 1

eStatusDev1 : LibSparkplug.SPB_STATUS_DEVICE; // Status for Device 1
eProtobufStatusDev1 : LibSparkplug.SPB_PROTOBUF_ERROR_CODE; // Protobuf error

codes for Device 1

// Variables for Metric 0 directly below the EoN
rVar_Metric0_EoN : REAL; // Variable reported by this metric
rVar_Metric0_EoN_aux : REAL; // Auxiliary variable for reporting this

metric by exception or deadband

// Variables for Metric 1 directly below the EoN

23

3. CONFIGURATION

iVar_Metric1_EoN : INT; // Variable reported by this metric
iVar_Metric1_EoN_aux : INT; // Auxiliary variable for reporting this

metric by exception or deadband

// Variables for Metric 2 directly below the EoN
xVar_Metric2_EoN : BOOL; // Variable reported by this metric
xVar_Metric2_EoN_aux : BOOL; // Auxiliary variable for reporting this

metric by exception or deadband

// Variables for Metric 0 of Device 0
lrVar_Metric0_Dev0 : LREAL; // Variable reported by this metric
lrVar_Metric0_Dev0_aux : LREAL; // Auxiliary variable for reporting this

metric by exception or deadband

// Variables for Metric 1 of Device 0
uiVar_Metric1_Dev0 : UINT; // Variable reported by this metric
uiVar_Metric1_Dev0_aux : UINT; // Auxiliary variable for reporting this

metric by exception or deadband

// Variables for Metric 0 of Device 1
liVar_Metric0_Dev1 : LINT; // Variable reported by this metric
liVar_Metric0_Dev1_aux : LINT; // Auxiliary variable for reporting this

metric by exception or deadband
END_VAR

24

3. CONFIGURATION

3.4.2. Code Section of POU EoN

Figure 8: Code of POU EoN - Part 1

25

3. CONFIGURATION

Figure 9: Code of POU EoN - Part 2

26

3. CONFIGURATION

Figure 10: Code of POU EoN - Part 3

The code between lines 1 and 83 is intended for configurations. One may think that this code could be executed only once
during initialization. Nevertheless, executing this code in all cycles is recommended because of possible online changes.

The code between lines 123 and 136 is optional. Include code only for those metrics you want to report by setting the
in_xTrigger input (two lines of code for each metric).

The following text box is a copy of the code section shown in the previous figure. It is intended to copy and paste this
example, should you want to test it.

// Configure MQTT parameters
stMqttParameter.sClientID := 'EON CONTROL';
stMqttParameter.sHostName := '192.168.201.140';
stMqttParameter.sUser := '';
stMqttParameter.sPass := '';
stMqttParameter.uiPort := 1883;
stMqttParameter.uiKeepAlive := 60;
stMqttParameter.xEnableTLS := FALSE;
stMqttParameter.sCertFileName := '';
stMqttParameter.sClientCert := '';
stMqttParameter.sClientKey := '';

// Configure variables for metric 0 of EoN
afbEonMetrics[0].in_sName := 'Metric 0 of EoN';
afbEonMetrics[0].in_pValue := ADR(rVar_Metric0_EoN);
afbEonMetrics[0].in_usiMaxPayloadSize := UINT_TO_USINT(SIZEOF(rVar_Metric0_EoN))

;

27

3. CONFIGURATION

afbEonMetrics[0].in_eDataType := LibSparkplug.SPB_PROTOBUF_DATA_TYPES.Float;
afbEonMetrics[0].in_xEnableHist := TRUE;
afbEonMetrics[0].in_stPublishParameters.ePubMode := LibSparkplug.

SPB_PUBLISH_MODE.RBE;
afbEonMetrics[0].in_stPublishParameters.pBufferVariable := ADR(

rVar_Metric0_EoN_aux);
afbEonMetrics[0].in_stPublishParameters.rDeadBandValue := 0; // not used with

RBE
afbEonMetrics[0].in_stPublishParameters.usiTrunc := 2;
afbEonMetrics[0].in_xTrigger := FALSE;

// Configure variables for metric 1 of EoN
afbEonMetrics[1].in_sName := 'Metric 1 of EoN';
afbEonMetrics[1].in_pValue := ADR(iVar_Metric1_EoN);
afbEonMetrics[1].in_usiMaxPayloadSize := UINT_TO_USINT(SIZEOF(iVar_Metric1_EoN))

;
afbEonMetrics[1].in_eDataType := LibSparkplug.SPB_PROTOBUF_DATA_TYPES.Int16;
afbEonMetrics[1].in_xEnableHist := TRUE;
afbEonMetrics[1].in_stPublishParameters.ePubMode := LibSparkplug.

SPB_PUBLISH_MODE.DEAD_BAND_ABSOLUTE;
afbEonMetrics[1].in_stPublishParameters.pBufferVariable := ADR(

iVar_Metric1_EoN_aux);
afbEonMetrics[1].in_stPublishParameters.rDeadBandValue := 3;
afbEonMetrics[1].in_stPublishParameters.usiTrunc := 0; // not used with integer

variables
afbEonMetrics[1].in_xTrigger := FALSE;

// Configure variables for metric 2 of EoN
afbEonMetrics[2].in_sName := 'Metric 2 of EoN';
afbEonMetrics[2].in_pValue := ADR(xVar_Metric2_EoN);
afbEonMetrics[2].in_usiMaxPayloadSize := UINT_TO_USINT(SIZEOF(xVar_Metric2_EoN))

;
afbEonMetrics[2].in_eDataType := LibSparkplug.SPB_PROTOBUF_DATA_TYPES.Boolean;
afbEonMetrics[2].in_xEnableHist := TRUE;
afbEonMetrics[2].in_stPublishParameters.ePubMode := LibSparkplug.

SPB_PUBLISH_MODE.RBE;
afbEonMetrics[2].in_stPublishParameters.pBufferVariable := ADR(

xVar_Metric2_EoN_aux);
afbEonMetrics[2].in_stPublishParameters.rDeadBandValue := 0; // not used with

boolean variables
afbEonMetrics[2].in_stPublishParameters.usiTrunc := 0; // not used with boolean

variables
afbEonMetrics[2].in_xTrigger := FALSE;

// Configure variables for metric 0 of Device 0
afbDev0Metrics[0].in_sName := 'Metric 0 of Device 0';
afbDev0Metrics[0].in_pValue := ADR(lrVar_Metric0_Dev0);
afbDev0Metrics[0].in_usiMaxPayloadSize := UINT_TO_USINT(SIZEOF(

lrVar_Metric0_Dev0));
afbDev0Metrics[0].in_eDataType := LibSparkplug.SPB_PROTOBUF_DATA_TYPES.Double;
afbDev0Metrics[0].in_xEnableHist := TRUE;
afbDev0Metrics[0].in_stPublishParameters.ePubMode := LibSparkplug.

SPB_PUBLISH_MODE.RBE;
afbDev0Metrics[0].in_stPublishParameters.pBufferVariable := ADR(

lrVar_Metric0_Dev0_aux);
afbDev0Metrics[0].in_stPublishParameters.rDeadBandValue := 0; // not used with

28

3. CONFIGURATION

RBE
afbDev0Metrics[0].in_stPublishParameters.usiTrunc := 2;
afbDev0Metrics[0].in_xTrigger := FALSE;

// Configure variables for metric 1 of Device 0
afbDev0Metrics[1].in_sName := 'Metric 1 of Device 0';
afbDev0Metrics[1].in_pValue := ADR(uiVar_Metric1_Dev0);
afbDev0Metrics[1].in_usiMaxPayloadSize := UINT_TO_USINT(SIZEOF(

uiVar_Metric1_Dev0));
afbDev0Metrics[1].in_eDataType := LibSparkplug.SPB_PROTOBUF_DATA_TYPES.UInt16;
afbDev0Metrics[1].in_xEnableHist := TRUE;
afbDev0Metrics[1].in_stPublishParameters.ePubMode := LibSparkplug.

SPB_PUBLISH_MODE.RBE;
afbDev0Metrics[1].in_stPublishParameters.pBufferVariable := ADR(

uiVar_Metric1_Dev0_aux);
afbDev0Metrics[1].in_stPublishParameters.rDeadBandValue := 0; // not used with

RBE
afbDev0Metrics[1].in_stPublishParameters.usiTrunc := 0; // not used with integer

variables
afbDev0Metrics[1].in_xTrigger := FALSE;

// Configure variables for metric 0 of Device 1
afbDev1Metrics[0].in_sName := 'Metric 0 of Device 1';
afbDev1Metrics[0].in_pValue := ADR(liVar_Metric0_Dev1);
afbDev1Metrics[0].in_usiMaxPayloadSize := UINT_TO_USINT(SIZEOF(

liVar_Metric0_Dev1));
afbDev1Metrics[0].in_eDataType := LibSparkplug.SPB_PROTOBUF_DATA_TYPES.Int64;
afbDev1Metrics[0].in_xEnableHist := TRUE;
afbDev1Metrics[0].in_stPublishParameters.ePubMode := LibSparkplug.

SPB_PUBLISH_MODE.RBE;
afbDev1Metrics[0].in_stPublishParameters.pBufferVariable := ADR(

liVar_Metric0_Dev1_aux);
afbDev1Metrics[0].in_stPublishParameters.rDeadBandValue := 0; // not used with

RBE
afbDev1Metrics[0].in_stPublishParameters.usiTrunc := 0; // not used with integer

variables
afbDev1Metrics[0].in_xTrigger := FALSE;

// Execute FB for the Device 0
afbDevice[0](

in_xEnable:= xEnableDev0,
in_sDeviceId:= 'Device 0',
in_usiMaxMetrics:= 2,
in_pMetrics:= ADR(afbDev0Metrics[0]),
out_eStatus=> eStatusDev0,
out_eProtobufStatus=> eProtobufStatusDev0);

// Execute FB for the Device 1
afbDevice[1](

in_xEnable:= xEnableDev1,
in_sDeviceId:= 'Device 1',
in_usiMaxMetrics:= 1,
in_pMetrics:= ADR(afbDev1Metrics[0]),
out_eStatus=> eStatusDev1,
out_eProtobufStatus=> eProtobufStatusDev1);

29

3. CONFIGURATION

// Execute FB for the EoN
fbEoN(

in_xEnable:= xEnableEon, // Enable the FB
in_sGroupId:= 'GROUP 11', // Group ID for the EoN
in_sEonId:= 'PLC XP340', // EoN ID
in_sPrimaryHostId:= 'SCADA_Ignition_Host_1', // Primary host ID
in_pEonMetrics:= ADR(afbEonMetrics[0]), // Pointer to the array with
configuration of the metrics of the EoN

in_usiQtyEonMetrics:= 3, // Quantity of metrics directly below the
EoN

in_pDevices:= ADR(afbDevice[0]), // Pointer to the array with
configuration of the devices of the EoN

in_usiQtyDevices:= 2, // Quantity of devices of the EoN
in_pStorageBuffer:= ADR(abStorageBuffer[0]), // Pointer to the array with the

storage buffer
in_uiSizeBuffer:= UDINT_TO_UINT(SIZEOF(abStorageBuffer)), // Size of the array

with the storage buffer
in_stMqttParameters:= stMqttParameter, // MQTT parameters
in_timTimePeriodic:= T#1S, // Period for detecting changes using
publish modes RBE or DEAD_BAND_ABSOLUTE

out_xError=> xError, // Output for error presence indication
out_xIsConnected=> xIsConnected, // Output for indicating connection
with MQTT broker

out_xIsBuffering=> xIsBuffering, // Output for indicating buffering
mode

out_stStatus=> stStatus, // Output for indicating status (
diagnostics)

out_eError=> eError); // Output for indicating an error code

// Manage the inputs in_xTrigger for all metrics
// Do not need to include those metrics where trigger publish mode will never be

employed
afbEonMetrics[0]();
afbEonMetrics[0].in_xTrigger := FALSE;
afbEonMetrics[1]();
afbEonMetrics[1].in_xTrigger := FALSE;
afbEonMetrics[2]();
afbEonMetrics[2].in_xTrigger := FALSE;
afbDev0Metrics[0]();
afbDev0Metrics[0].in_xTrigger := FALSE;
afbDev0Metrics[1]();
afbDev0Metrics[1].in_xTrigger := FALSE;
afbDev1Metrics[0]();
afbDev1Metrics[0].in_xTrigger := FALSE;

3.5. Example of Authentication Configuration
Authentication means to use a user name and a password for authorizing the connection between the EoN to the MQTT

broker.
This section gives an example of authentication configuration using the MQTT broker Mosquitto version 2.0.18.
In addition, it is necessary to configure a user name and a password in the host applications that connect to this Mosquitto

MQTT broker. This is not covered in this example. Please read the user manual of the host application for this purpose.

30

3. CONFIGURATION

Inittially define a user name and a password that will be passed in the EoN application, using the fields sUser and sPass of
input in_stMqttParameters of Function Block SPB_FB_SPARKPLUG. For instance:

sUser = ’xp340’
sPass = ’altus’

The remaining steps define how to configure the authentication in MQTT broker Mosquitto version 2.0.18:

1. Create a text file named "passwd.txt" in the same path where Mosquitto is installed (for instance: C:\ProgramFiles\
mosquitto). This file must contain at least the following line:

xp340:altus

2. Additional lines can be inserted in the file "passwd.txt", for creating more user names and passwords that allow connec-
tion. So, different clients can connect using different passwords. For instance:

xp340:altus
host_1:scada

3. Now open a command prompt and select the path where Mosquito installed:

4. Execute the following command that will encrypt the file with user names and passwords:

5. If you open the file passwd.txt again, you will see something like this:

6. Now it is necessary to make some changes in the configuration file (for instance, mosquitto.conf). The two following
lines must be adjusted in this file for requesting authentication and defining the file where the user names and passwords
are defined:

allow_anonymous false
password_file C:\Program Files\mosquitto\passwd.txt

7. Finally, run mosquitto using the following command prompt:

3.6. Example of TLS Security Configuration
TLS security means to use an encrypted communication between EoN and the MQTT broker (TLS encryption versions

1.0, 1.1 or 1.2).
This section gives an example of TLS version 1.2 configuration using the MQTT broker Mosquitto version 2.0.18.
In addition, it is necessary to configure TLS security in the host applications that connect to this Mosquitto MQTT broker.

This is not covered in this example. Please read the user manual of the host application for this purpose.
The following subsections define the steps for this configuration.

31

3. CONFIGURATION

3.6.1. Adjust Clock and Keep them Synchronized

Adjust the clock of computers and PLCs involved in the process before starting the configuration. This is necessary because
certificate files expire, and the expiration date is calculated relative to the current date and time.

Afterwards, keep the EoN and host applications with correct date and time for avoiding unexpected expiration of the
certificate files. For instance, use the STNP synchronization capability of computers and EoN.

3.6.2. Generate Certificates

Certificate files must be generated for using TLS security. These files must be installed in the MQTT server (MQTT broker)
and in the MQTT clients (EoN and host applications).

The following certificate files must be generated:

ca.crt: this is the root certificate file, that must be installed in the MQTT server (MQTT broker) and in all the MQTT
clients (EoN and host applications).
server.crt: this is a specific certificate file for the server, that must be installed only in the MQTT server (MQTT broker).
server.key: this is a specific key file for the server, that must be installed only in the MQTT server (MQTT broker).
eon.crt: this is a specific certificate file for a MQTT client (in this case the Nexto PLC as an EoN). It must be installed
only in the MQTT client (Nexto PLC as an EoN).
eon.key: this is a specific key file for a MQTT client (in this case the Nexto PLC as an EoN). It must be installed only
in the MQTT client (Nexto PLC as an EoN).

For other MQTT clients like host applications, two specific files (.crt and .key) must be generated. The TLS configuration
for host applications is not covered by this example (see user manual of the host application).

For generating the aforementioned certificate files, we used the following version of software OpenSSL:

After installing the software, add the path C:\ProgramFiles\OpenSSL-Win64\bin to the PATH environment
variable of Windows, so that you can execute OpenSSL from any folder.

The following steps describe how to generate the 5 aforementioned certificate files in a folder called C:\Certificates.
Note that some additional files are generated (a few intermediary files that will not be used).

Step 1: Open a command prompt and go to folder C:\Certificates where the certificates will be generated:

Step 2: Generate intermediary file "ca.key":

Step 3: Generate file "ca.crt":
The parameter "-days" define the validity of the certificate in days (in this example 365 days). After executing the command,

it asks for several information fields, like country name. It is not necessary to inform most of these fields, except the field
"Common Name" (in this example: CA-Entity).

32

3. CONFIGURATION

Step 4: Generate file "server.key" for the MQTT broker:

Step 5: Generate file "eon.key" for the EoN:

Step 6: Generate intermediary file "server.csr" for the MQTT broker:
After executing the command, it asks for several information fields, like country name. It is not necessary to inform most

of these fields, except the field "Common Name" that must inform the IP adress of the machine with the MQTT broker (in this
example: 192.168.201.141).

Step 7: Generate intermediary file "eon.csr" for the EoN:
After executing the command, it asks for several information fields, like country name. It is not necessary to inform most

of these fields, except the field "Common Name" that must inform the IP adress of the EoN (in this example: 192.168.201.50).

33

3. CONFIGURATION

Step 8: Generate file "server.crt" for the MQTT broker:

Step 9: Generate file "eon.crt" for the EoN:

Step 10: Verify file "server.crt" for the MQTT broker:

Step 11: Verify file "eon.crt" for the EoN:

Step 12: Check the files in the folder:
At the end, the following files must be in the folder. The .csr files, and ca.key, are intermediary files that will not be used

in the following steps.

3.6.3. Install Certificate Files in the MQTT Broker

Select the folder where the MQTT Broker Mosquitto is installed (e.g.: C:\ProgramFiles\mosquitto), and create
the folder "Certs" (if not created yet).

After this, copy the three following files to the folder C:\ProgramFiles\mosquitto\Certs:

ca.crt
server.crt
server.key

34

3. CONFIGURATION

3.6.4. Install Certificate Files in the EoN

Using the Mastertool programming system, select Device/Files and select the following files from C:\Certificates
in the left panel, and select the folder "cert" in the right panel:

ca.crt
eon.crt
eon.key

After this, copy these three files to the folder "cert" of the EoN.

3.6.5. Edit the Configuration File of MQTT Broker Mosquitto

For using TLS security, some changes must be made in the configuration file of Mosquitto (C:\ProgramFiles\
mosquitto\mosquitto.conf).

1. Change the listener port to 8883 (the normal value without TLS is 1883):

listener 8883

2. Define the name and location of the certificate files:

35

3. CONFIGURATION

cafile C:\Program Files\mosquitto\Certs\ca.crt
certfile C:\Program Files\mosquitto\Certs\server.crt
keyfile C:\Program Files\mosquitto\Certs\server.key

3. Request to use certificate files:

require_certificate true

3.6.6. Adjust the EoN Application

For using the TLS configuration of this example, the following fields of input in_stMqttParameters must be adjusted:

uiPort = 8883
xEnableTLS = TRUE
sCertFileName = ’ca.crt’
sClientCert = ’eon.crt’
sClientKey = ’eon.key’

3.7. Effects of Online Change
Sometimes the user may download a new application using an online change. The changes in this new application may or

may not be related to the Sparkplug configuration.
To avoid problems like exceptions, the Function Block SPB_FB_SPARKPLUG detects an online change and then com-

mands an automatic reconfiguration. This reconfiguration behaves very similar to a power-on configuration, or to a reconfigu-
ration commanded by the user creating a rising edge in the input in_xEnable of the Function Block SPB_FB_SPARKPLUG.

However, an automatic reconfiguration after an online change tries to preserve the historical data in the storage buffer (see
section Buffering Capability of Nexto Controllers). The storage buffer will only be preserved if the following conditions are
true:

The address of the storage buffer has not changed (input in_pStorageBuffer of Function Block SPB_FB_SPARKPLUG).
The size of the storage buffer has not changed (input in_uiSizeBuffer of Function Block SPB_FB_SPARKPLUG).

36

	1 Introduction
	1.1 Documents Related to this Manual
	1.2 Technical Support
	1.3 Warning Messages Used in this Manual

	2 Sparkplug Features
	2.1 Sparkplug Terminology in this Manual
	2.1.1 MQTT Broker
	2.1.2 EoN
	2.1.3 Device
	2.1.4 Metric
	2.1.5 Host Application
	2.1.5.1 Primary Host
	2.1.5.2 Non-Primary Hosts

	2.2 Compliance of Nexto Controllers with Sparkplug Specification
	2.3 Buffering Capability of Nexto Controllers
	2.3.1 Selective Buffering
	2.3.2 Buffer Size

	3 Configuration
	3.1 Software Versions
	3.2 Library LibSparkplug
	3.2.1 Function Block SPB_FB_SPARKPLUG
	3.2.1.1 in_xEnable
	3.2.1.2 in_sGroupId
	3.2.1.3 in_sEonId
	3.2.1.4 in_sPrimaryHostId
	3.2.1.5 in_pEonMetrics
	3.2.1.6 in_usiQtyEonMetrics
	3.2.1.7 in_pDevices
	3.2.1.8 in_usiQtyDevices
	3.2.1.9 in_pStorageBuffer
	3.2.1.10 in_uiSizeBuffer
	3.2.1.11 in_stMqttParameters
	3.2.1.11.1 sClientId
	3.2.1.11.2 sHostName
	3.2.1.11.3 sUser
	3.2.1.11.4 sPass
	3.2.1.11.5 uiPort
	3.2.1.11.6 uiKeepAlive
	3.2.1.11.7 xEnableTLS
	3.2.1.11.8 sCertFilename
	3.2.1.11.9 sClientCert
	3.2.1.11.10 sClientKey

	3.2.1.12 in_timTimePeriodic
	3.2.1.13 out_xError
	3.2.1.14 out_xIsConnected
	3.2.1.15 out_xIsBuffering
	3.2.1.16 out_stStatus
	3.2.1.16.1 bDeviceNotFound
	3.2.1.16.2 bInvalidJson
	3.2.1.16.3 eProtobufStatus
	3.2.1.16.4 eMqttErrorCode

	3.2.1.17 out_eError

	3.2.2 Function Block SPB_FB_DEVICE
	3.2.2.1 in_xEnable
	3.2.2.2 in_sDeviceId
	3.2.2.3 in_usiMaxMetrics
	3.2.2.4 in_pMetrics
	3.2.2.5 out_eStatus
	3.2.2.6 out_eProtobufStatus

	3.2.3 Function Block SPB_FB_METRICS
	3.2.3.1 in_sName
	3.2.3.2 in_pValue
	3.2.3.3 in_usiMaxPayloadSize
	3.2.3.4 in_eDataType
	3.2.3.5 in_stPublishParameters
	3.2.3.5.1 ePubMode
	3.2.3.5.2 pBufferVariable
	3.2.3.5.3 rDeadBandValue
	3.2.3.5.4 usiTrunc

	3.2.3.6 in_xTrigger
	3.2.3.7 in_xEnableHist

	3.3 Diagnostics
	3.4 Example of Usage of Library LibSparkplug
	3.4.1 Variable Section of POU EoN
	3.4.2 Code Section of POU EoN

	3.5 Example of Authentication Configuration
	3.6 Example of TLS Security Configuration
	3.6.1 Adjust Clock and Keep them Synchronized
	3.6.2 Generate Certificates
	3.6.3 Install Certificate Files in the MQTT Broker
	3.6.4 Install Certificate Files in the EoN
	3.6.5 Edit the Configuration File of MQTT Broker Mosquitto
	3.6.6 Adjust the EoN Application

	3.7 Effects of Online Change

