
MQTT - User Manual

MU214606 Rev. C

June 5, 2020

General Supply Conditions

No part of this document may be copied or reproduced in any form without the prior written consent of Altus Sistemas de
Automação S.A. who reserves the right to carry out alterations without prior advice.

According to current legislation in Brazil, the Consumer Defense Code, we are giving the following information to clients
who use our products, regarding personal safety and premises.

The industrial automation equipment, manufactured by Altus, is strong and reliable due to the stringent quality control
it is subjected to. However, any electronic industrial control equipment (programmable controllers, numerical commands,
etc.) can damage machines or processes controlled by them when there are defective components and/or when a programming
or installation error occurs. This can even put human lives at risk. The user should consider the possible consequences of
the defects and should provide additional external installations for safety reasons. This concern is higher when in initial
commissioning and testing.

The equipment manufactured by Altus does not directly expose the environment to hazards, since they do not issue any kind
of pollutant during their use. However, concerning the disposal of equipment, it is important to point out that built-in electronics
may contain materials which are harmful to nature when improperly discarded. Therefore, it is recommended that whenever
discarding this type of product, it should be forwarded to recycling plants, which guarantee proper waste management.

It is essential to read and understand the product documentation, such as manuals and technical characteristics before its
installation or use. The examples and figures presented in this document are solely for illustrative purposes. Due to possible
upgrades and improvements that the products may present, Altus assumes no responsibility for the use of these examples and
figures in real applications. They should only be used to assist user trainings and improve experience with the products and
their features.

Altus warrants its equipment as described in General Conditions of Supply, attached to the commercial proposals.
Altus guarantees that their equipment works in accordance with the clear instructions contained in their manuals and/or

technical characteristics, not guaranteeing the success of any particular type of application of the equipment.
Altus does not acknowledge any other guarantee, directly or implied, mainly when end customers are dealing with

third-party suppliers. The requests for additional information about the supply, equipment features and/or any other Altus
services must be made in writing form. Altus is not responsible for supplying information about its equipment without formal
request. These products can use EtherCAT® technology (www.ethercat.org).

COPYRIGHTS
Nexto, MasterTool, Grano and WebPLC are the registered trademarks of Altus Sistemas de Automação S.A.
Windows, Windows NT and Windows Vista are registered trademarks of Microsoft Corporation.

OPEN SOURCE SOFTWARE NOTICE
To obtain the source code under GPL, LGPL, MPL and other open source licenses, that is contained in this product, please

contact opensource@altus.com.br. In addition to the source code, all referred license terms, warranty disclaimers and copyright
notices may be disclosed under request.

I

www.ethercat.org
opensource@altus.com.br

CONTENTS

Contents

1. Introduction . 1
1.1. Technical Support . 1
1.2. Warning Messages . 2

2. MQTT Client Working Flow . 3
3. MQTT Client I/O Structure . 5

3.1. Input Parameters . 5
3.1.1. ENABLE - Enable the MQTT Client . 5
3.1.2. CONNECTION_CONFIG . 5
3.1.3. SUBSCRIBE . 9
3.1.4. PUBLISH . 10

3.2. Outputs Parameters . 12
3.2.1. CONNECTED . 12
3.2.2. STATE . 12
3.2.3. ERROR . 12
3.2.4. ERROR_CODE . 12
3.2.5. PUBLISH_STATUS . 12
3.2.6. LAST_TOPIC . 12
3.2.7. RECEIVED_MESSAGES . 13

4. Application Example . 14

II

1. INTRODUCTION

1. Introduction
This manual describes library LibMQTT. This library makes available one function block, called MQTT_CLIENT, and

some related structures and enumerations, as shown in the figure below. The FB MQTT_CLIENT allows the user stablish a
communication with a MQTT Broker, which can be online (cloud) or local.

Figure 1: Components of library LibMQTT

ATTENTION:
This document doesn’t have the objective to teach about the MQTT itself. It only explains
some features and variables related to the protocol.

ATTENTION:
On systems with CPU redundancy, the MQTT Client Function Block must be called on the
non-redundant part of the program (NonSkippedPrg).

Message Queuing Telemetry Transport (MQTT) is a protocol based on publish/subscribe. This protocol sends and receives
messages asynchronously. There is a concept of client and broker. All clients connect to a broker and publish messages on
topics. This messages are distributed by the broker according to the clients subscribed for that topic.

This document is organized in the following chapters:

Chapter MQTT Client Working Flow describes how the function block communicate with the broker.
Chapter MQTT Client I/O Structure shows all inputs and outputs necessary (and optional) to use the function block.
Chapter Application Example gives an example to the user, improving the function block understand.

1.1. Technical Support
For Altus Technical Support contact in São Leopoldo, RS, call +55 51 3589-9500. For further information regarding the

Altus Technical Support existent on other places, see http://www.altus.com.br/site_en/ or send an email to altus@altus.com.br.
If the equipment is already installed, you must have the following information at the moment of support requesting:

The model of the used equipments and the installed system configuration
The product serial number
The equipment revision and the executive software version, written on the tag fixed on the product side
CPU operation mode information, acquired through MasterTool IEC XE
The application software content, acquired through MasterTool IEC XE
Used programmer version

1

http://www.altus.com.br/site_en/
altus@altus.com.br

1. INTRODUCTION

1.2. Warning Messages
In this manual, the warning messages will be presented in the following formats and meanings:

DANGER:
Reports potential hazard that, if not detected, may be harmful to people, materials, environ-
ment and production.

CAUTION:
Reports configuration, application or installation details that must be taken into considera-
tion to avoid any instance that may cause system failure and consequent impact.

ATTENTION:
Identifies configuration, application and installation details aimed at achieving maximum
operational performance of the system.

2

2. MQTT CLIENT WORKING FLOW

2. MQTT Client Working Flow
The figure below shows the function block interface. Note that the structure is very simple. However, it uses some

structures to configure the MQTT client, which increase the complexity. Next chapter will describe in detail all inputs and
outputs parameters.

Figure 2: MQTT Client Parameters

The working flow of the function block is based in a machine state, so it needs to be called periodically to work properly.
Typically, the Function Block will be called on the main application cycle (MainTask).

CAUTION:
For CPU models NX3010, NX3020 and NX3030, the period of execution of the MQTT Client
Function Block must be greater than 15 ms. For example, if the Function Block is called on
MainTask context, the MainTask interval must be greater than this value.

The diagram below shows how this process is made. This is important to understand how the connection is made and the
MQTT_CLIENT flow for subscribe and publish.

3

2. MQTT CLIENT WORKING FLOW

Figure 3: MQTT Client Flowchart

According the flowchart, the function block starts in IDLE. When ENABLE goes to TRUE, the MQTT client will try to
connect to the broker, which is specified on the MQTT_CONN_CONFIG structure. After that, the client will subscribe to all
topics entered in the MQTT_SUBSCRIBE structure array. Finally, it will be ready to receive and publish messages. A topic
is like an address, where the broker and the client exchange messages, similar to a forum in a web site, which has a moderator
(broker), the users (clients) and the specific conversation topic. The MQTT_RECEIVED_MESSAGES structure array contains
details about all subscribed topics, while the MQTT_PUBLISH structure array contains the parameters needed to publish a
message to the broker. It is possible to notice that the subscription is made only once during the connection. So, if you want to
change the topics that the client will subscribe, or some other connection configuration, it is necessary re-enable the function
block to validate this new information. Only the publish structure can be modified without disable the MQTT client.

4

3. MQTT CLIENT I/O STRUCTURE

3. MQTT Client I/O Structure
On the previous chapter, we understand how the function block works. In this chapter, we will see how to configure the

MQTT client, which will organized on two sections. The first section will explain all input parameters. And the second section
will describe all outputs.

3.1. Input Parameters
All function block inputs described in this section are shown in the list below, which will be organized on sections:

ENABLE
CONNECTION_CONFIG
SUBSCRIBE
PUBLISH

3.1.1. ENABLE - Enable the MQTT Client

Type: BOOL
Default: FALSE

This input is responsible to start the function block. When it is TRUE, the working flow will start, changing the MQTT
client state from IDLE to READY, if the connection succeed (see Figure 3). If the client is connected to the broker and the
ENABLE goes to FALSE, the client will disconnect.

3.1.2. CONNECTION_CONFIG

Type: MQTT_CONN_CONFIG

This input allows the user to configure the connection. All variables in the structure are used only in the CONNECTING
state.

CONNECTION_CONFIG.sClientId

Type: STRING(255)
Default: ”

This variable corresponds to the Client ID, which will be how the broker will identify the client. The input must be a
string (up to 255 characters). This is an optional input. If an empty string is passed as argument, a random Client ID will be
generated.

CONNECTION_CONFIG.bCleanSession

Type: BOOL
Default: TRUE

The Clean Session parameter indicates to the broker if the session for the respective Client ID must be saved
or not. If this variable is set as FALSE, the broker will save the session for the Client ID. This parameter
must be TRUE if sClientId is an empty string. This avoid the client to keep session trash on the broker, once the client
not know how the broker identifies it.

CONNECTION_CONFIG.sUser

Type: STRING(255)
Default: ”

This parameter is the username (up to 255 characters), which will be required by the broker in the connection. It
is an optional input. However, if the connection needs a specific credential, the client will be disconnected during the
CONNECTING state when this input is set with the wrong username.

CONNECTION_CONFIG.sPass

Type: STRING(255)
Default: ”

5

3. MQTT CLIENT I/O STRUCTURE

This is the password that correspond to the username (up to 255 characters). If there is no password, only a username, it
is possible to keep this input empty. However, if the broker credential required a password, you need to enter the right one
to stablish the connection. The password is one way allowed by MQTT to guarantee some security, but it is not the most secure.

CONNECTION_CONFIG.sHostname

Type: STRING(255)
Default: ”

The hostname is the URL or IP address of the broker (up to 255 characters). The MQTT protocol uses the TCP/IP
interface, so, it is necessary to inform the broker address. This input is mandatory, once the client must know the host it will
try to connect. The broker can be online (e.g. Alibaba Broker) or local (e.g. Windows Mosquitto).

CONNECTION_CONFIG.uiPort

Type: UINT
Default: 1883

This parameter is the TCP/IP port that the broker and the client will use to communicate via MQTT. The standard port for
MQTT is 1883. However, for TLS encrypted connection, the default is 8883. This input must be the same that the broker will
listen.

CONNECTION_CONFIG.uiKeepAlive

Type: UINT
Default: 60

The Keep Alive is a parameter used to verify if the client is connected to the broker. This input is the interval of the ping
request sent to the broker, in seconds. If the client does not receive any answer, it will be assumed the connection is not alive.

CONNECTION_CONFIG.sLastWillTopic

Type: STRING(1024)
Default: ”

The Last Will is a feature that allows the client to configure a message to be published when it is disconnected. The broker
will publish the message to the topic specified on this parameter (up to 1024 characters). If this string is empty, the Last Will
message will not be configured by the broker.

CONNECTION_CONFIG.pbLastWillPayload

Type: POINTER TO BYTE
Default: NULL

Besides the topic, the Last Will message must receive a variable address - ADR(variable), which is the message itself, also
called payload. This variable can be of any type (e.g. STRING, DWORD, BYTE...). The address is necessary once the MQTT
protocol allows any kind of variable. If this pointer is NULL, the Last Will message will not be configured by the broker, even
if the topic was configured.

CAUTION:
It is mandatory that the variable has the same type used by others clients, just to guarantee
the correct data exchange.

CONNECTION_CONFIG.uiLastWillPayloadSize

Type: UINT
Default: 0

This input is the message size, on bytes. This parameters must be at most the SIZEOF(variable), which is the memory size
allocated for the variable. If a value lower than the variable size is configured, the message will be cut (e.g. a string with the
message ’I am a message’, if the size is 4 bytes, the message will be received as ’I am’).

CAUTION:
Never use a size greater than the variable, this will send trash information to the broker,
or worse, cause an access violation. It is strongly recommended to use always the SIZEOF
function. When the client will send a STRING variable, use the LEN function instead of
SIZEOF, which will count the number of characters in the STRING, avoiding the publishing
of undesired data.

6

3. MQTT CLIENT I/O STRUCTURE

CONNECTION_CONFIG.eLastWillMessageQoS

Type: MQTT_QOS
Default: MQTT_QOS_0

This input is the Quality of Service (QoS) of the Last Will message. The QoS represents the message consistence. This
value goes from 0 to 2, where 2 is the best quality but slower, and 0 the most unreliable but faster.

ATTENTION:
The QoS 0 is delivered at most once time, in other words, if the broker is not available during
the message publish, the message will be lost. The QoS 1 should deliver the message at
least once, what means the sender stores the message, while waits the receiver acknowledge,
resending the message if it is not received. The QoS 2 should deliver the message exactly one
time, which is done by a four-part handshake.

CONNECTION_CONFIG.bLastWillRetain

Type: BOOL
Default: FALSE

This parameter indicates to the broker that the Last Will message must be retained. A retain message will be received
as any other message, however, when a new client subscribe to the topic (or after a disconnection), the message will be
automatically send to it, marked as a retained message.

CONNECTION_CONFIG.bEnableTLS

Type: BOOL
Default: FALSE

The MQTT client function block allows the use of TLS encryption (version 1.0, 1.1 and 1.2). This security method allows
a very secure connection. This will be required by the broker, which must implement the TLS encryption (server certificate)
with a Certificate Authority (CA) file. This parameter must match the configuration of the broker or the connection will not
be established. If the broker uses TLS, must be TRUE, otherwise, keep the default. The TLS is based on certificates and keys,
where the main certificate (the CA) is used to generate the server certificate (and the client, if desirable). An OpenSSL tool
is able to create all certificates that you need to implement a TLS connection, since the CA file until the server and client
certificates and keys. If you are using a broker on the cloud, you must download the CA file used on their TLS connection.

CONNECTION_CONFIG.sCertFilename

Type: STRING(255)
Default: ”

This input corresponds to the Certificate Authority (CA) file name (up to 255 characters). The CA must be pass to the PLC
with the Device ->Files tool on the Master Tool (see the image below). It must be added to the folder "cert" on the controller’s
internal memory. This CA file is the same used by the server. This input must receive the name of the file imported via Device
->Files (e.g. ’ca.crt’, in the image). If a wrong name is entered in this field or there is no file in the PLC, the connection will
be denied and the client will be disconnected.

Figure 4: Sending TLS CA file to the PLC

7

3. MQTT CLIENT I/O STRUCTURE

ATTENTION:
A TLS Certificate Authority (CA) must not require a password to access it. All controllers
can use a TLS version up to 1.2 since the firmware version 1.9.2.0, except the CPUs NX3010,
NX3020 and NX3030 that only accept TLS version 1.0. The TLS version is selected automat-
ically by the Function Block.

CONNECTION_CONFIG.sClientCert

Type: STRING(255)
Default: ”

This input is where you fill the name of the client certificate, generated from the CA file. To add the file, use the same
method explained on the sCertFilename. Transfer your client certificate to the controller’s memory in the "cert" folder, as
shown in the image below. Then, fill this input with the file name used (e.g. ’client.crt’). You must not enter with the client
certificate if the broker doesn’t request it, this can cause a connection failure. On the other hand, if the broker requires a client
certificate, you must enter with the certificate (this input) and the key (the next parameter) with the respective file names that
were transferred to the controller.

Figure 5: Sending TLS client certificate file to the PLC

CONNECTION_CONFIG.sClientKey

Type: STRING(255)
Default: ”

This is where you put the client key name, which is part of the client certificate. Use the same method of the sCertFilename
and the sClientCert to add the key to the MQTT Function Block: transfer it to the controller memory ("cert" folder, see the
image below) and add its name to this input. If the broker doesn’t require a client certificate, you must not fill this parameter
or the connection will fail. The same behaviour will occur if a wrong name or the file doesn’t exist in the correct folder.

8

3. MQTT CLIENT I/O STRUCTURE

Figure 6: Sending TLS client key file to the PLC

3.1.3. SUBSCRIBE

Type: ARRAY [1..ui_gcMaxSubs] OF MQTT_SUBSCRIBE

This input is an array of structure for configure the topics that the client will subscribe. It is an array to allowed the user to
monitor different topics at the same time. The parameter ui_gcMaxSubs is editable (LibMQTT ->MQTTClient_Parameters,
see the image below). Remember that once this input is an array, it must be accessed like SUBS[1]. All variables in SUB-
SCRIBE are used only in the SUBSCRIBING state, described in the Figure 3.

Figure 7: Maximum Number of Subscribe Parameter

SUBSCRIBE[n].sSubscribeTopic

Type: STRING(1024)
Default: ”

This input is the specific topic that the client will subscribe (up to 1024 characters). If the topic is empty, the subscription
will be ignored for this structure index. This behaviour is independent for other elements in the array.

SUBSCRIBE[n].eSubscribeQoS

Type: MQTT_QOS
Default: MQTT_QOS_0

The Quality of Service (QoS) in the subscription represents the QoS expected for the message that the client will receive.
The best QoS is the 2 but is the slowest, while the 0 is the most unreliable but the fastest.

ATTENTION:
The QoS 0 is delivered at most once time, in other words, if the broker is not available during
the message publish, the message will be lost. The QoS 1 should deliver the message at
least once, what means the sender stores the message, while waits the receiver acknowledge,
resending the message if it is not received. The QoS 2 should deliver the message exactly one
time, which is done by a four-part handshake.

SUBSCRIBE[n].pbPayloadBuffer

9

3. MQTT CLIENT I/O STRUCTURE

Type: POINTER TO BYTE
Default: NULL

This parameter is the address of the buffer that will receive the newest message (also called payload) sent by the broker.
The MQTT protocol allows to send and to receive any type of data (e.g. STRING, DWORD, BYTE...), this is why this input
is a pointer. Use the ADR function (e.g. ADR(variable)) to pass the variable address. When the client receives a message, it
will be copied to this variable. The RECEIVED_MESSAGES parameter contains the description of the message received in
the topic.

CAUTION:
It is mandatory that the variable has the same type used by others clients, just to guarantee
the correct data exchange.

SUBSCRIBE[n].uiMaxPayloadSize

Type: UINT
Default: 0

This size will be the maximum size, on bytes, that the message can be received. This information is necessary to avoid a
memory invasion by some message bigger than the variable pointed in pbPayloadBuffer. If this size is lower than the size of
the message received, the message in the buffer will be cut (e.g. a string with the message ’I am a message’, if the size is 4
bytes, the message will be received as ’I am’). On the other hand, it the message size is lower or equal to the size specified in
this input, the output uiReceivedPayloadSize will contain the original size of the message. Always use the SIZEOF function
in this input, once it must be at most all the memory space available for the variable passed.

CAUTION:
Never use a size greater than the variable, this will send trash information to the broker,
or worse, cause an access violation. It is strongly recommended to use always the SIZEOF
function. When the client will send a STRING variable, use the LEN function instead of
SIZEOF, which will count the number of characters in the STRING, avoiding the publishing
of undesired data.

3.1.4. PUBLISH

Type: ARRAY [1..ui_gcMaxPubs] OF MQTT_PUBLISH

This array of structure is responsible to configure the messages that will be published by the client. The parameter
ui_gcMaxPubs is editable (LibMQTT ->MQTTClient_Parameters, see the image below). This input must be set as an ar-
ray, like PUBS[1]. The PUBLISH is used during the READY state (Figure 3), which is the client loop.

Figure 8: Maximum Number of Publish Parameter

PUBLISH[n].bEnablePublish

Type: BOOL
Default: FALSE

This boolean will enable the function block to publish the configured message. It is developed as rising edge to avoid a
burst of messages to the broker. Therefore, if it is TRUE, the message will be published once.

CAUTION:
The MQTT protocol is processed on the background (low priority). For this reason, the
publish may not occur immediately when it is enabled.

PUBLISH[n].sPublishTopic

10

3. MQTT CLIENT I/O STRUCTURE

Type: STRING(1024)
Default: ”

It is the topic where the message will be published (up to 1024 characters). If this string is empty and the enable is TRUE,
the publish will be ignored.

PUBLISH[n].pbPublishPayload

Type: POINTER TO BYTE
Default: NULL

This is the message (also called payload) that will be published in the specified topic. Enter with the address of the desired
variable, using the ADR function. For the MQTT, the data published can be of any type (e.g. STRING, DWORD, BYTE...),
this is why a pointer is necessary. If this input is NULL, the publish will be ignored.

CAUTION:
It is mandatory that the variable has the same type used by others clients, just to guarantee
the correct data exchange.

PUBLISH[n].uiPublishPayloadSize

Type: UINT
Default: 0

It is the size of the message that will be published. This information complements the pbPublishPayload, which is a pointer
to the variable that will be sent. The size will inform the MQTT client function block the amount of bytes of the message that
will be published. Therefore, if this size is lower than the variable, the message will be cut (e.g. a string with the message ’I
am a message’, if the size is 4 bytes, the message will be received as ’I am’). If this size is keep as zero, an empty message
will be publish on the topic.

CAUTION:
Never use a size greater than the variable, this will send trash information to the broker,
or worse, cause an access violation. It is strongly recommended to use always the SIZEOF
function. When the client will send a STRING variable, use the LEN function instead of
SIZEOF, which will count the number of characters in the STRING, avoiding the publishing
of undesired data.

PUBLISH[n].ePublishMessageQoS

Type: MQTT_QOS
Default: MQTT_QOS_0

This parameter is the Quality of Service (QoS) of the message that will be published. The QoS specifies the consistence of
the message that the client will send. The best QoS is the 2 but is the slowest, while the QoS 0 is the most unreliable but the
faster.

ATTENTION:
The QoS 0 is delivered at most once time, in other words, if the broker is not available during
the message publish, the message will be lost. The QoS 1 should deliver the message at
least once, what means the sender stores the message, while waits the receiver acknowledge,
resending the message if it is not received. The QoS 2 should deliver the message exactly one
time, which is done by a four-part handshake.

PUBLISH[n].bPublishRetain

Type: BOOL
Default: FALSE

Enable this input to retain the published in the broker. A retained message is sent when the client subscribes to the topic.
When the client is already connected, the retained message is processed like a normal message.

11

3. MQTT CLIENT I/O STRUCTURE

3.2. Outputs Parameters
All outputs of the MQTT client function block are shown in the list below, which are described on the following sections:

CONNECTED
STATE
ERROR
ERROR_CODE
PUBLISH_STATUS
LAST_TOPIC
RECEIVED_MESSAGES

3.2.1. CONNECTED

Type: BOOL

This output shows when the client successfully connects to the broker. When the client loses the connection, this boolean
goes to FALSE, being necessary to disable and enable the function block to reconnect.

3.2.2. STATE

Type: MQTT_STATES

It is the current state of the function block. The states are IDLE, CONNECTING, SUBSCRIBING, READY and DIS-
CONNECTED as shown in the Figure 3.

3.2.3. ERROR

Type: BOOL

This boolean indicates when the MQTT client found an error. The error not necessarily disconnects the client, so it is
possible to have both ERROR and CONNECTED on TRUE. The error is described by ERROR_CODE.

3.2.4. ERROR_CODE

Type: MQTT_ERR_CODE

This output describes the error state of the MQTT client. See the enumerate MQTT_ERR_CODE to all possibilities. When
the client is communicating without problems, the ERRO_CODE will shown MQTT_NO_ERROR.

3.2.5. PUBLISH_STATUS

Type: ARRAY [1..gc_uiMaxPubs] OF BOOL

This boolean indicates when the message was published by the MQTT client function block for each element of the
PUBLISH structure array. It goes to TRUE when bEnablePublish is TRUE and the publish was made successfully or not.
When bEnablePublish returns to FALSE, this output also will be FALSE. This is useful to know if the message was published
or not.

3.2.6. LAST_TOPIC

Type: STRING(1024)

This string (up to 1024 characters) is the last topic received by the client. Only subscribed topics can appear in this field.

12

3. MQTT CLIENT I/O STRUCTURE

3.2.7. RECEIVED_MESSAGES

Type: ARRAY [1..gc_uiMaxSubs] OF MQTT_RECEIVED

This array of structure relates all topics in SUBSCRIBE. In this structure, some informations are shown about the last
message received for a specific topic. The RECEIVED_MESSAGES is updated during the READY state, see Figure 3.

RECEIVED_MESSAGES[n].udiMessageCounter

Type: UDINT

This output shows how many times a message was received for the specific topic. When a new message is received, the
counter is increased by one unit.

RECEIVED_MESSAGES[n].sReceivedTopic

Type: STRING(1024)

It is the topic that client is subscribed. This output is loaded during the SUBSCRIBING state (see Figure 3) with the
information entered in the SUBSCRIBE input. Therefore, the topic appears even when none message was received.

RECEIVED_MESSAGES[n].uiReceivedPayloadSize

Type: UINT

This parameter shows the original size of the received message. However, the message itself is delimited by uiMaxPay-
loadSize in the SUBSCRIBE structure. It is useful to know that some client publish some message greater than expected.

RECEIVED_MESSAGES[n].eReceivedMessageQoS

Type: MQTT_QOS

This output shows the Quality of Service (QoS) of the last message received for the specific topic. It will only receive
messages that respect the QoS configuration entered in eSubscribeQoS (parameter of SUBSCRIBE structure).

ATTENTION:
The QoS 0 is delivered at most once time, in other words, if the broker is not available during
the message publish, the message will be lost. The QoS 1 should deliver the message at
least once, what means the sender stores the message, while waits the receiver acknowledge,
resending the message if it is not received. The QoS 2 should deliver the message exactly one
time, which is done by a four-part handshake.

RECEIVED_MESSAGES[n].bReceivedRetain

Type: BOOL

It is TRUE if the message received is retained. In other words, if some client publish a message as retain and other client
subscribe to the topic that the message was published, this client will receive the message as soon as it subscribes. For this
reason, the message will be marked as retained.

13

4. APPLICATION EXAMPLE

4. Application Example
This chapter will show an example of application developed on Continuous Function Chart (CFC), using a local broker

with the Windows Mosquitto. First of all, download the broker in Eclipse Download. After that, install it and open a Windows
prompt as administrator. Then, go to the Mosquitto root path and execute the command mosquitto -v, see the image below.

Figure 9: Mosquitto Broker - Prompt

The command will use the default configuration for the broker. If you desired to change any settings, edit the file
mosquitto.conf in the Mosquitto root path and use the command as mosquitto -c mosquitto.conf -v. At this point, the bro-
ker is online. So, in the application, we only need to enter the computer IP as hostname. The images below shows the function
block configuration.

Figure 10: MQTT Client Example - Variables

14

https://mosquitto.org/download/

4. APPLICATION EXAMPLE

Figure 11: MQTT Client Example - Code

The function block is highlighted by the red rectangle. All others boxes are compounds and selectors used to access the
function block structures (CONNECTION_CONFIG, SUBSCRIBE, PUBLISH and RECEIVED_MESSAGES). It is possible
to notice that all array variables are using the index (e.g. SUBS[1]), even when ui_gcMaxSubs or ui_gcMaxPubs is one, see
the image below.

Figure 12: MQTT Client Example - MQTTClient_Parameters

When everything is properly configured, it is time to download the application and run it. This application will connect
to the local broker (e.g. ’192.168.16.106’) with the ID ’MyID’, and will subscribe to the topic ’TEST1’. Also, it will publish
the string ’PUBLISH MESSAGE’ to the same topic. This will occur when bEnable is TRUE. Note that the same message
published will be received on Rcv_Message. The prompt will show the message exchange. Finally, when the bEnable returns
to FALSE, the client will disconnect and the broker will send the Last Will message ’I WILL DIE’ to the topic ’TEST2’. The
images below shows the behaviour described.

15

4. APPLICATION EXAMPLE

Figure 13: MQTT Client Example - Publish and Subscribe

The red rectangle shows the message published, while the blue highlight indicates the received message. Note that both
are the same. If you desired to see another example, see the Knowledge Base of Altus for an application based on Structured
Text (ST) or Ladder Diagram (LD).

16

https://www.altus.com.br/base-conhecimento

	1 Introduction
	1.1 Technical Support
	1.2 Warning Messages

	2 MQTT Client Working Flow
	3 MQTT Client I/O Structure
	3.1 Input Parameters
	3.1.1 ENABLE - Enable the MQTT Client
	3.1.2 CONNECTION_CONFIG
	3.1.3 SUBSCRIBE
	3.1.4 PUBLISH

	3.2 Outputs Parameters
	3.2.1 CONNECTED
	3.2.2 STATE
	3.2.3 ERROR
	3.2.4 ERROR_CODE
	3.2.5 PUBLISH_STATUS
	3.2.6 LAST_TOPIC
	3.2.7 RECEIVED_MESSAGES

	4 Application Example

